Exposure, Metabolism, and Effects of Arsenic in Residents from Arsenic-contaminated Groundwater Areas of Southeast Asia

Tetsuro AGUSA¹, Takashi KUNITO², Reiji KUBOTA³, Shinusuke TANABE¹ and Hisato IWATA¹

¹Center for Marine Environmental Studies (CMES), Ehime University, Japan
²Department of Environmental Sciences, Faculty of Science, Shinshu University, Japan
³Division of Environmental Chemistry, National Institute of Health Sciences, Tokyo, Japan

(Received 25 September 2011; accepted 6 December 2011)

Abstract—Since 2000, we have investigated the exposure, metabolism, and toxic effect of arsenic (As) in residents from As-contaminated groundwater areas of Southeast Asia. Here, we introduce the recent results of the investigations. Monitoring studies showed that As contamination is ubiquitous in the groundwater from Southeast Asia and also exceeded WHO guidelines in a large number of samples from the Mekong River. The results of As analyses in the human hair and urine indicate that residents in the As-contaminated areas are mostly exposed to As through the uptake of As contaminated groundwater. Studies on genetic polymorphisms of arsenic (+III) methyltransferase and glutathione-S-transferase suggested that these enzymes are involved in the metabolism of arsenic in residents who have been exposed to high levels of As. Levels of urinary 8-hydroxy-2′-deoxyguanosine were higher in the subjects with elevated levels of As in the hair and urine, suggesting the induction of oxidative DNA damage by As exposure.

Keywords: arsenic, groundwater, human, genetic polymorphism, oxidative stress

INTRODUCTION

It is well known that inorganic As is carcinogenic. Contamination by naturally derived inorganic As in groundwater is one of the serious health issues on a global scale, especially in developing countries. Skin, lung, kidney, bladder, and liver cancers or skin lesions including keratosis and pigmentation by chronic exposure to As through groundwater consumption were observed in local residents from these areas (Wu et al., 1989; Tondel et al., 1999). In the Ganges Delta (Bangladesh and West Bengal in India), which is one of the most As affected areas, it is estimated that 36 million people are subjected to the risk of As exposure (Nordstrom, 2002).

Since Berg et al. (2001) reported remarkably high As concentration (up to 3,050 µg/l) in groundwater from Vietnam, several studies on As contamination
in groundwater from Southeast Asia has been carried out and reported high concentration of As (e.g., Trang et al., 2005; Berg et al., 2006, 2007; Buschmann et al., 2007, 2008). Therefore, human health risk by As exposure through the consumption of groundwater is of concern in these areas. However, information is still scarce on the exposure, metabolism and toxic effects of inorganic As in residents from As-contaminated groundwater areas in Southeast Asia compared with Bangladesh and West Bengal, India. Since 2000, we have collected the groundwater and biological samples from the local residents in Vietnam, Cambodia, Thailand, Laos, and India. Based on the results of investigations, the geographical distribution of As contamination in groundwater was clarified, and the exposure level, metabolic capacity and effects of As in humans were assessed (Agusa et al., 2002, 2004, 2005, 2006, 2007, 2008, 2009a, 2009b, 2009c, 2010a, 2010b, 2010c, 2011, 2012; Kubota et al., 2006; Iwata et al., 2007). Here, we briefly introduce our recent results of investigations carried out in Vietnam, Cambodia, Thailand, Laos, and India in 2000–2007.

DISTRIBUTION OF AS IN GROUNDWATER

Concentration of As in groundwater is shown in Fig. 1 (Agusa et al., 2002, 2004, 2005, 2006, 2007, 2008, 2009a, 2009b, 2009c, 2010a, 2010b, 2010c, 2011, 2012; Kubota et al., 2006; Iwata et al., 2007). Through our studies, we found that totally 37% of water samples analyzed had over the standard level (10 µg/l) for As in drinking water established by WHO (WHO, 2004). Remarkably, more than 1,000 µg/l of As was observed in several groundwater samples from Kandal, Cambodia (Iwata et al., 2007) and these levels were comparable with Bangladesh or West Bengal in India (Nordstrom, 2002). Hence, As contamination in groundwater, which is of great concern on human health risk, is widespread in Southeast Asia and India.

Exposure to As: A Case Study in Northern Vietnam

It is well known that ingested inorganic As is metabolized to methylated species (monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA)) in the liver and then excreted into the urine and hair. Therefore, urine and hair samples are useful indicators to assess exposure status and metabolism of As in human. To assess human As exposure level, we analyzed As concentrations in human hair and urine of residents from As-contaminated groundwater areas in North Vietnam (Agusa et al., 2002, 2005, 2006, 2007, 2008, 2009a, 2009b, 2009c, 2010a, 2010b, 2010c, 2011, 2012; Kubota et al., 2006). For the collection of human samples, the informed consent was obtained from all the participants. Our studies have been approved by the Ethical Committee of Ehime University, Japan and the Center for Environmental Technology and Sustainable Development (CETASD), Hanoi National University, Hanoi, Vietnam.

A significant positive correlation between As concentrations in drinking water and human hair was observed. Urinary arsenite (As[III]) as well as its metabolites, MMA and DMA concentrations in humans were also positively
correlated with As concentrations in drinking water. These results suggest that local residents are exposed to As through the drinking water and the ingested inorganic As is metabolized to its methylated compounds.
Metabolism of As: A Case Study in Northern Vietnam

There is a large variation in the susceptibility of inorganic As toxicity among individuals and population. It is suggested that the variation is related to genetic polymorphisms in the metabolism of inorganic As. In general, there are two main reactions on As metabolism in human; reductive reactions of pentavalent to trivalent As, and methylation reactions in which trivalent forms of As are sequentially methylated to form mono-, and dimethylated products. In these pathways, two enzymes, glutathione-S-transferase omega (GSTO) (Zakharyan et al., 2005) and arsenic (+III) methyltransferase (AS3MT) (Lin et al., 2002; Wood et al., 2006) play a role in inorganic As metabolism; GSTO has the reductase activity of pentavalent arsenicals to trivalent forms, while AS3MT can catalyze the methylation of As compound. Significant associations of single nucleotide polymorphisms (SNPs) in AS3MT and GSTO1 with variations in metabolic capacity of inorganic As are reported in several in vitro and/or human case studies (Meza et al., 2005; Schmuck et al., 2005; Wood et al., 2006; Schläwicke Engström et al., 2007; Lindberg et al., 2007; Steinmaus et al., 2007).

Our recent study investigated relationships between As metabolic capacity estimated by urinary As profile and genetic polymorphisms in As metabolic enzymes in 199 subjects from the Red River Delta in Vietnam (Agusa et al., 2009c, 2010a, 2010b, 2011, 2012). Urinary DMA/MMA for the hetero type (Met/Thr) of AS3MT Met287Thr in Vietnamese is significantly lower than the wild type (Met/Met). Urinary MMA/inorganic As for the hetero type (Glu/dell) of GSTO1 Glu155del was high compared with the homo type (Glu/Glu) (p < 0.05). For the GSTM1 polymorphism, the null type had lower As[III]/arsenate (As[V]) and MMA/inorganic As than the wild type. These findings indicate that genetic polymorphisms in GSTM1, GSTO1, and AS3MT may be responsible for inorganic As metabolism in Vietnamese.

Several studies reported significant associations of GSTO1 and GSTM1 polymorphisms with increased prevalence of As induced skin lesions or cancers (Ghosh et al., 2006; Ahsan et al., 2007), while negative results were observed (McCarty et al., 2007; De Chaudhuri et al., 2008). Study on the relationships among As exposure, metabolic capacity, genetic polymorphisms, and health effects in human is needed in future.

DNA Damage by As: A Case Study in Cambodia

It has been suggested that oxidative stress caused by As exposure is a trigger of carcinogenesis (Kitchin and Ahmad, 2003). Reactive oxygen species such as hydroxyl radical and dimethylarsenic peroxy radical produced by As exposure can directly or indirectly damage cellular DNA (Liu et al., 2001). 8-Hydroxy-2′-deoxyguanosine (8-OHdG) is known to be an indicator of oxidative stress due to one of the major forms of damaged DNA. Elevated 8-OHdG concentrations were observed in urine of residents chronically exposed to As through drinking water in Inner Mongolia, China (Fujino et al., 2005). As-related skin neoplasms and keratosis of Bowen’s diseases (Matsui et al., 1999), and As-related human skin
tumors of inhabitants in As polluted area in Gejiu, China (An et al., 2004). In the case of our Cambodian study, urinary 8-OHdG level was elevated in higher As exposure group compared with lower As exposure group (Kubota et al., 2006). Such a high oxidative DNA damage observed in the subjects from the As affected areas of Cambodia may be due to chronic exposure to As from groundwater.

We noticed no symptoms of As-related diseases in subjects in a line of investigations, probably due to short history of usage of groundwater. The latency period for human carcinogenesis is thought to be 30–50 years (Yamauchi et al., 2004). In the regions examined in our studies, the inhabitants started using tube-well water as drinking water in the latter half of 1990s. However, skin disease by chronic As exposure in some people from Southeast Asia have been reported in other studies (Dang et al., 2004; Mazumder et al., 2009). Further epidemiological studies on human health effects are required.

CONCLUSIONS

Through investigations in 2000–2007, we indicate the following; 1) The elevated As contamination in groundwater are widely distributed in Southeast Asia and India. 2) Local residents are exposed to high level of As, which oxidative stress is considered, through the consumption of groundwater. 3) Genetic polymorphisms of AS3MT and GST isoforms are significantly associated with As metabolism. The relationships between As exposure and health effects in humans have not yet been fully evaluated in these As-contaminated groundwater areas. A larger and more comprehensive epidemiologic study is needed for the accurate risk assessment of As in local residents of the present study areas.

Acknowledgments—The authors wish to thank Suguru Inoue, Karri Ramu, Nguyen Minh Tue, Nguyen Ngoc Ha, Shin Takahashi, Annamalai Subramanian in the CMES and Nguyen Phuc Cam Tu in the Faculty of Agriculture, Ehime University, Junko Fujihara and Haruo Takeshita in the Department of Legal Medicine, Shimane University Faculty of Medicine, Satoshi Nakamura in the Research Institute, International Medical Center of Japan, Tokyo, and Satoshi Takizawa in the Graduate School of Engineering, The University of Tokyo in Japan, Tu Binh Minh and Bui Cach Tuyen in the Vietnam Environment Administration (VEA), Ministry of Natural Resources and Environment (MONRE) and Pham Thi Kim Trang and Pham Hung Viet in the Center for Environmental Technology and Sustainable Development (CETASD), Hanoi National University in Vietnam, Paromita Charaborty in the State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, The Chinese Academy of Sciences in China, Chhoun Chamnan in the Inland Fisheries Research and Development Institute (IFReDe), Department of Fisheries and Touch Seang Tana in the Social and Cultural Observation Unit (OBSES), Office of the Council of Ministers in Cambodia, and Ailsara Reungsang in the Department of Biotechnology, Faculty of Technology and Kriengsak Srisuk in the Groundwater Research Center/Department of Geotechnology, Faculty of Technology, Khon Kaen University in Thailand and all donors and staffs for sample collection. This study was supported by Japan Society for the Promotion of Science (JSPS) for the cooperative research program under the Core University Program between JSPS and Vietnamese Academy of Science and Technology (VAST). Financial support was also provided by grants from Research Revolution 2002 (RR2002) Project for Sustainable Coexistence of Human, Nature and the Earth (FY2002), and Grants-in-Aid for Scientific Research (A) (No. 19209025) and Research Activity start-up (No. 23810023) from JSPS,
REFERENCES


Ahsan, H., Y. Chen, M. G. Kibriya, V. Slavkovich, F. Parvez, F. Jasmine, M. V. Gamble and J. H.


H. Iwata (e-mail: iwatah@agr.ehime-u.ac.jp)