EXPRESS LETTER

Spatial variation of isotopic compositions of snowpack nitrate related to post-depositional processes in eastern Dronning Maud Land, East Antarctica

KAZUSHI NORO, SHOHEI HATTORI,* RYU UEMURA, KOTARO FUKUI, MOTOHIRO HIRABAYASHI, KENJI KAWAMURA, HIDEAKI MOTOYAMA, NORIMICHI TAKENAKA and NAOHIRO YOSHIDA

1Graduate School of Engineering, Osaka Prefecture University, Osaka 599-8531, Japan
2Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Kanagawa 226-8502, Japan
3Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan
4Tateyama Caldera Sabo Museum, Toyama 930-1405, Japan
5National Institute of Polar Research, Tokyo 190-8518, Japan
6Earth-Life Science Institute (ELSI), Tokyo Institute of Technology, Tokyo 152-8550, Japan

(Received November 16, 2017; Accepted January 23, 2018; Online published March 9, 2018)

To evaluate post-depositional loss from the snow surface and subsequent redistribution of nitrate, we determined the spatial variation of nitrate concentrations, as well as δ15N and Δ17O values of nitrate in surface snow, sampled along a latitudinal transect in eastern Dronning Maud Land, East Antarctica. The NO3– concentrations of surface snow ranged from 40.0 to 130.8 mg L⁻¹, showing no obvious trends with latitude, while the δ15N(NO3–) in surface snow increased from coastal sites to inland sites, ranging from −19.4 to 165.5‰. The relationship between the isotopic values (δ15N and Δ17O) of nitrate and snow accumulation rate are consistent with other traverses studied in East Antarctica (e.g., from Dumont d’Urville station to Vostok, and from East Antarctic coast to Dome Argus), implying that post-depositional loss and redistribution occur similarly throughout East Antarctica.

Keywords: nitrate, photolysis, δ15N, Antarctica, snowpack

INTRODUCTION

Nitrate (HNO3(g) + p-NO3–) is one of the final oxidation products of reactive nitrogen species (NO2– NO, NO2 and HONO) in the atmosphere; it is also one of the major ions found in polar ice cores. Therefore, nitrate in ice cores is a potential proxy for NOx levels in the atmosphere of the past (Dibb et al., 1998). Solar variability on centennial to millennial time scales may imprint on the long-term NO3– record, as suggested by Traversi et al. (2012) in their work on the Talos Dome core record. However, a hypothesis linking NO3– spikes to Solar Energetic Particle (SEP) events has recently been discredited (Duderstadt et al., 2016; Wolff et al., 2012, 2016). A fundamental difficulty in interpreting the concentration of nitrate in ice cores is that nitrate is not stable after deposition to the snow surface, especially at sites with low snow accumulation (Blunier et al., 2005; Frey et al., 2009), which leads to net loss and redistribution within the snowpack (Frey et al., 2009; Jacobi and Hilkier, 2007; Röthlisberger et al., 2000). The relative importance of post-depositional loss processes, i.e., volatilization of nitric acid (HNO3) and photolysis of nitrate, has long been debated (Blunier et al., 2005; Röthlisberger et al., 2000). However, using the stable isotopic composition of nitrate in snow, it has recently been shown in field, laboratory and model experiments that nitrate loss is driven by UV photolysis dominates, especially under cold conditions (Berhanu et al., 2014; Erbland et al., 2013; Frey et al., 2009). HNO3 volatilization and associated isotopic fractionation may become important at warmer temperatures, greater than −20°C (Erbland et al., 2013). To date, attention has focused on the spatial variability of photolytic NO3– loss from surface snow in East Antarctica. This variability has been investigated along a traverse between the Dumont d’Urville station (in Adelie Land) and Vostok, passing through Dome C (Erbland et al., 2013), as well as along one from the East Antarctic coast to Dome Argus (Shi et al., 2015). Based on these studies, it is apparent that, at low accumulation sites, nitrate photolysis results in decreased nitrate concentration in the surface snow, from hundreds to tens of μg L⁻¹ below a depth of 10 cm, and...
with δ^{15}N(NO$_3^-$) values correspondingly increased. Spatial variation in NO$_3^-$ concentrations and nitrate isotopic compositions (δ^{15}N(NO$_3^-$), δ^{18}O(NO$_3^-$) and Δ^{17}O(NO$_3^-$)) in snowpack along a latitudinal transect between Syowa and Dome Fuji station have not previously been investigated. This study investigates such spatial variation in eastern Dronning Maud Land, East Antarctica, for comparison with results from other traverses.

MATERIALS AND METHODS

Sampling sites

Snow samples were collected in eastern Dronning Maud Land, during the 54th and 57th Japanese Antarctic Research Expedition (JARE). On JARE54, surface snow samples were collected along a coastal-inland traverse, between 25 November 2012 and 13 January 2013 (Fig. 1). Samples were collected and measured throughout the entire depth of between 0 to 30, 50, or 80 cm, as summarized in Table 1. Prior to nitrate measurements, the same melted snow samples were used for sulfur isotopic measurements (Uemura et al., 2016) and subsequently stored for about six months at 4°C, until nitrate was measured. Coastal snow samples were collected during JARE57 at six sites (S30, H42, H68, H80, H108 and H128), between 30 January 2016 and 5 February 2016 (Fig. 1). These were stored at –20°C until the nitrate measurements—from the surface to a depth of 50 cm—were made.

Chemical and isotopic analyses

The concentrations of SO$_4^{2-}$, Cl$^-$, NO$_3^-$, CH$_3$SO$_3^-$, Na$^+$, Ca$^{2+}$, Mg$^{2+}$, K$^+$, and NH$_4^+$ were measured using an ion chromatograph (Dionex ICS-5000+; Thermo Fisher Scientific, Waltham, MA, USA) at the National Institute of Polar Research. To carry out stable isotope analyses, the NO$_3^-$ in ice samples was separated from other ions using ion chromatography. In our setup, the outflow was collected by a fraction collector (CHF122SC; Advantec MFS, Inc., Dublin, CA, USA), as described in our previous study of coastal Antarctic aerosols (Ishino et al., 2017). The sample was pumped at a flow rate of ~1 mL min$^{-1}$ to a pre-concentration column (IonPac AG15, 4 x 50 mm; Dionex Corp., Sunnyvale, CA, USA). Once the sample was loaded onto the concentration column, anions were eluted using a KOH eluent under a gradient mode. Anions were passed through a guard column (IonPac AG19, 4 x 50 mm; Dionex Corp.) and a separation column (IonPac AS19, 4 x 250 mm, Dionex Corp.). In order to test for possible changes in isotopic compositions of NO$_3^-$ during ion chromatographic (IC) separation, we compared results—with or without IC separation—of reference materials USGS 32, 34 and 35, prepared in 18.2 MΩ.cm water (Supplementary Table S1). The differences between with and without IC separation were slightly correlated with isotopic compositions. Sample measurements were therefore also calibrated by using the correlation slope, for measuring δ^{15}N(NO$_3^-$), δ^{18}O(NO$_3^-$) and Δ^{17}O(NO$_3^-$), in order to avoid bias.

Isotopic compositions of NO$_3^-$ in solution were measured using a bacterial method, coupled with N$_2$O decomposition via microwave-induced plasma (MIP) (Hattori et al., 2016). Briefly, 100 nmol NO$_3^-$ was converted to N$_2$O by a strain of denitrifying bacteria, having no N$_2$O reductase. The N$_2$O produced was then isolated using chemical traps and gas chromatography; it was decomposed to O$_2$ and N$_2$ using MIP. The isotopic compositions of O$_2$ and N$_2$ were measured using isotope-ratio mass spectrometry (MAT253; Thermo Fisher Scientific). Isotopic reference materials, as well as USGS 32, 34, 35, and their mixtures, prepared in 18.2 MΩ.cm water, were also analyzed using the same analytical process as our samples, for normalization. Stable isotopic compositions are reported as: $\delta X = R_{\text{sample}} / R_{\text{reference}} - 1$, where X denotes 15N, 17O, or 18O, and R denotes the isotope ratios 15N/14N, 17O/16O, and 18O/16O, determined for both sample and standard materials. The δ values are reported as per mil (‰). The δ^{15}N value is relative to atmospheric N$_2$ (air), whereas δ^{18}O and δ^{17}O values are relative to Vi...
Table 1. Sample location, sampling date, altitude, latitude, longitude, depth, [NO$_3^-$], δ^{15}N, δ^{17}O, Δ^{17}O, and traverse information for sites mentioned in this study. DF 1 and 2 denote the Dome Fuji station, where a deep ice core was drilled (Dome Fuji Ice Core Project Members, 2017).

<table>
<thead>
<tr>
<th>Location</th>
<th>Sampling date</th>
<th>Sampling elevation (m, a.s.l.)</th>
<th>Latitude (%)</th>
<th>Longitude (°E)</th>
<th>Depth (cm)</th>
<th>[NO$_3^-$] (µg L$^{-1}$)</th>
<th>δ^{15}N (%)</th>
<th>δ^{17}O (%)</th>
<th>Δ^{17}O (%)</th>
<th>Traverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z2</td>
<td>25 Nov 2012</td>
<td>1924</td>
<td>70.0</td>
<td>42.4</td>
<td>0–80</td>
<td>52.3</td>
<td>20.6</td>
<td>69.1</td>
<td>27.4</td>
<td>JARE54</td>
</tr>
<tr>
<td>IM0</td>
<td>27 Nov 2012</td>
<td>2215</td>
<td>70.7</td>
<td>43.3</td>
<td>0–50</td>
<td>102.5</td>
<td>25.7</td>
<td>66.1</td>
<td>26.9</td>
<td>JARE54</td>
</tr>
<tr>
<td>NMD196</td>
<td>3 Dec 2012</td>
<td>2845</td>
<td>72.2</td>
<td>44.3</td>
<td>0–50</td>
<td>79.8</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>JARE54</td>
</tr>
<tr>
<td>NMD304</td>
<td>5 Dec 2012</td>
<td>3192</td>
<td>73.1</td>
<td>42.9</td>
<td>0–50</td>
<td>69.5</td>
<td>41.1</td>
<td>55.4</td>
<td>24.1</td>
<td>JARE54</td>
</tr>
<tr>
<td>NMD370</td>
<td>8 Dec 2012</td>
<td>3338</td>
<td>74.1</td>
<td>43.0</td>
<td>0–50</td>
<td>83.1</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>JARE54</td>
</tr>
<tr>
<td>MD590</td>
<td>12 Dec 2012</td>
<td>3684</td>
<td>76.0</td>
<td>41.1</td>
<td>0–50</td>
<td>104.1</td>
<td>83.5</td>
<td>68.8</td>
<td>31.9</td>
<td>JARE54</td>
</tr>
<tr>
<td>DF1</td>
<td>20 Dec 2012</td>
<td>3803</td>
<td>77.3</td>
<td>39.7</td>
<td>0–30</td>
<td>94.0</td>
<td>127.3</td>
<td>51.3</td>
<td>29.4</td>
<td>JARE54</td>
</tr>
<tr>
<td>NDF</td>
<td>25 Dec 2012</td>
<td>3763</td>
<td>77.8</td>
<td>39.1</td>
<td>0–30</td>
<td>71.2</td>
<td>111.7</td>
<td>43.0</td>
<td>24.9</td>
<td>JARE54</td>
</tr>
<tr>
<td>Plateau S</td>
<td>28 Dec 2012</td>
<td>3678</td>
<td>79.4</td>
<td>40.5</td>
<td>0–30</td>
<td>80.3</td>
<td>165.5</td>
<td>37.5</td>
<td>24.5</td>
<td>JARE54</td>
</tr>
<tr>
<td>S80</td>
<td>2 Jan 2013</td>
<td>3625</td>
<td>80.0</td>
<td>40.5</td>
<td>0–30</td>
<td>130.8</td>
<td>90.7</td>
<td>37.7</td>
<td>20.3</td>
<td>JARE54</td>
</tr>
<tr>
<td>Fuji pass</td>
<td>8 Jan 2013</td>
<td>3787</td>
<td>77.4</td>
<td>41.5</td>
<td>0–30</td>
<td>92.4</td>
<td>74.3</td>
<td>19.8</td>
<td>13.2</td>
<td>JARE54</td>
</tr>
<tr>
<td>DF2</td>
<td>13 Jan 2013</td>
<td>3803</td>
<td>77.3</td>
<td>39.7</td>
<td>0–30</td>
<td>79.8</td>
<td>118.6</td>
<td>25.0</td>
<td>18.7</td>
<td>JARE54</td>
</tr>
<tr>
<td>S30</td>
<td>3 Feb 2016</td>
<td>986</td>
<td>69.0</td>
<td>40.7</td>
<td>0–50</td>
<td>40.0</td>
<td>–19.0</td>
<td>75.8</td>
<td>28.2</td>
<td>JARE57</td>
</tr>
<tr>
<td>H42</td>
<td>3 Feb 2016</td>
<td>1101</td>
<td>69.1</td>
<td>40.9</td>
<td>0–50</td>
<td>65.4</td>
<td>–6.6</td>
<td>85.5</td>
<td>30.8</td>
<td>JARE57</td>
</tr>
<tr>
<td>H68</td>
<td>3 Feb 2016</td>
<td>1164</td>
<td>69.2</td>
<td>41.1</td>
<td>0–50</td>
<td>66.5</td>
<td>–14.5</td>
<td>82.3</td>
<td>28.8</td>
<td>JARE57</td>
</tr>
<tr>
<td>H88</td>
<td>3 Feb 2016</td>
<td>1244</td>
<td>69.3</td>
<td>41.2</td>
<td>0–50</td>
<td>124.3</td>
<td>–19.4</td>
<td>83.7</td>
<td>30.3</td>
<td>JARE57</td>
</tr>
<tr>
<td>H108</td>
<td>3 Feb 2016</td>
<td>1315</td>
<td>69.3</td>
<td>41.4</td>
<td>0–50</td>
<td>87.9</td>
<td>–6.4</td>
<td>77.8</td>
<td>30.0</td>
<td>JARE57</td>
</tr>
<tr>
<td>H128</td>
<td>30 Jan 2016</td>
<td>1376</td>
<td>69.4</td>
<td>41.6</td>
<td>0–50</td>
<td>38.5</td>
<td>14.1</td>
<td>91.0</td>
<td>34.5</td>
<td>JARE57</td>
</tr>
</tbody>
</table>

N.D.: not determined.

denna Standard Mean Ocean Water (VSMOW). Δ^{17}O notation is used in this study to identify mass-independent fractionation of oxygen, which causes deviation from a mass-dependent fractionation line. Δ^{17}O is defined here by the linear approximation Δ^{17}O $= \delta^{17}$O $– 0.52 \times \delta^{18}$O. By propagating analytical uncertainties for the IC separation and replicate isotopic measurements of USGS 34, 35 and 32, the estimated combined uncertainties were 0.6‰, 1.8‰, and 0.3‰ for δ^{15}N(NO$_3^-$), δ^{17}O(NO$_3^-$) and Δ^{17}O(NO$_3^-$), respectively.

RESULTS

Figure 2 shows altitude, snow accumulation rate (A), NO$_3^-$ concentrations, and δ^{15}N(NO$_3^-$) values for each sampling site plotted against latitude. Values for A decrease with increasing elevation, from coastal to inland sites (Figs. 2a and 2b; data are from Hoshina et al., 2016). NO$_3^-$ concentrations in surface snow from coastal to inland sites ranged from 38.5 to 130.8 µg L$^{-1}$, without any specific trend with latitude (Fig. 2c). A wide variation in [NO$_3^-$] in surface snow at coastal sites was observed during JARE57, having values from 38.5 to 124.3 µg L$^{-1}$ (Table 1). In contrast, a narrow range in [NO$_3^-$] was observed at inland sites on JARE54, having values from 71.2 to 130.8 µg L$^{-1}$ (Table 1). Along a previous traverse between Syowa to Dome Fuji (Suzuki et al., 2003), NO$_3^-$ concentrations at inland sites were 430 ± 100 µg L$^{-1}$, approximately four times higher than those observed in this study. This difference can be explained by the different sampling depth of Suzuki et al. (2003) (surface ~ 3 cm) compared with this study (0–30 cm). As explained below, our δ^{15}N(NO$_3^-$) results indicate that NO$_3^-$ concentrations were influenced by post-depositional loss. The δ^{15}N(NO$_3^-$) in surface snow clearly increases from –19.4 to 165.5‰ along this transect, moving from low- to high-latitudes (Figs. 1 and 2d). The δ^{15}N(NO$_3^-$) values observed in coastal surface snow on JARE57 and JARE54 were –19.4 to –6.4‰ and 20.6 to 25.7‰, respectively. Meanwhile, the δ^{17}O values observed in inland surface snow on JARE54 were 41.0 to 165.5‰.

DISCUSSION

Spatial variation of nitrate and its isotopic composition in East Antarctica

To explain the increasing trend in δ^{15}N(NO$_3^-$) values (Fig. 2d) with elevation, it is necessary to consider nitrogen source, post-depositional loss (through photolysis and sublimation) and redistribution of re-emitted NOy. Atmospheric measurements on the Antarctic coast at Halley show that organic NOy (CH$_3$NO$_3$ and PAN) dominate in
fluenced by UV photolysis, whereby the $^{14}\text{NO}_3^-$ isotope is removed faster than the $^{15}\text{NO}_3^-$ isotopologue (Berhanu et al., 2014), leading to enrichment of $^{15}\text{N}^{15}\text{NO}_3^-$ in the remaining nitrate. On the inland Antarctic plateau, we assume that a single and irreversible process of NO_3^- loss occurs, because the physical release such as volatilization of nitrate leads to only a minor net mass loss (Erbland et al., 2013).

To quantify the effect of nitrate loss related to photolysis, the $^{15}\text{N}^{14}\text{N}$ fractionation factor ($^{15}\varepsilon$) is expressed, based on a Rayleigh model, as follows: $\ln(\delta^{15}\text{N}_0 + 1) = ^{15}\varepsilon \ln f + \ln(\delta^{15}\text{N}_0 + 1)$, where $\delta^{15}\text{N}_0$ and $\delta^{15}\text{N}_f$ denote δ values for initial and remaining NO_3^-, respectively; and f is the remaining mass fraction of NO_3^-. (Blunier et al., 2005). The remaining NO_3^- mass fraction f can be evaluated using measured $\delta^{15}\text{N}(\text{NO}_3^-)$ values from this study, assuming an initial $\delta^{15}\text{N}_0$ value of 19±3‰; (Savarino et al., 2007), and an $^{15}\varepsilon$ for UV photolysis of nitrate, based on laboratory experiments simulated for the Dome C site (~47.9±6.8‰, Berhanu et al., 2014). Thus, the remaining nitrate mass fraction was calculated to be 11±5%, 15±6%, 5±3%, 23±8%, 32±9%, and 13±5% for sites DF1, NDF, Plateau S, S80, Fuji Pass, and DF2, respectively. These values are based on stratospheric input only. If tropospheric sources are also significant, the results will need to be revised accordingly.

In contrast, it is oversimplifying to apply only an $^{15}\varepsilon$ related to photolysis of NO_3^-, when calculating f at coastal sites in Antarctica. This is because sublimation and redistribution of recycled NO_3^- affect both NO_3^- concentrations and $\delta^{15}\text{N}(\text{NO}_3^-)$. In fact, the $\delta^{15}\text{N}(\text{NO}_3^-)$ values at coastal sites (S30, H42, H68, H80, H108 and H128) ranged from ~18.7‰ to 14.2‰ (Table 1 and Fig. 2d); these values were lower than $\delta^{15}\text{N}(\text{NO}_3^-)$ values of nitrate from the stratosphere (19±3‰; (Savarino et al., 2007)). This suggests that other factors influence the $\delta^{15}\text{N}(\text{NO}_3^-)$ deposited at coastal sites. These lower $\delta^{15}\text{N}(\text{NO}_3^-)$ values can be explained by nitrogen dynamics and the redistribution of nitrate occurring in Antarctica. For example, the $\delta^{15}\text{N}(\text{NO}_3^-)$ values of atmospheric nitrate in spring in Antarctica are comparatively low ($\delta^{15}\text{N} = -32.7±8.4‰$ (Savarino et al., 2007)). Such re-emitted NO_3^- inland transported to coastal sites via katabatic winds would result in lower $\delta^{15}\text{N}(\text{NO}_3^-)$ values observed in coastal snow. Furthermore, nitrate concentrations observed in the coastal surface snow samples from S30, H42, H68, H88, H108 and H128 along the JARE57 traverse showed a 3-fold variation (Fig. 2c). The $\delta^{15}\text{N}(\text{NO}_3^-)$ from surface snow at sites S30 to H108 exhibited relatively small variation, ranging from ~18.7 to ~6.2‰, while the $\delta^{15}\text{N}(\text{NO}_3^-)$ value at H128 was higher (14.2‰) than for other samples (Fig. 2d; Table 1). Given that $\delta^{15}\text{N}(\text{NO}_3^-)$ values in the coastal snow are lower than in nitrate from the stratosphere, the low values of $\delta^{15}\text{N}(\text{NO}_3^-)$ are likely related to the redistribution of nitrate. Thus, the main process determining winter and are consistent with an oceanic source (Jones et al., 2011). However, surface snow nitrate strongly correlates with inorganic NO_x (especially HNO_3) (Jones et al., 2011), indicating that the snow nitrate is dominated by HNO_3. Degradation products of organic nitrate can form nitrate only indirectly, via NO_x production (e.g., see introduction in Savarino et al., 2007). Further inland, on the high Plateau, the influence of tropospheric sources would become less important, especially in winter, and the stratospheric inputs dominate, as supported by isotope measurements (Savarino et al., 2007; Wagenbach et al., 1998). Therefore, the main source of nitrate is from UV destruction of nitrous oxide (N_2O) in the stratosphere. In this study the initial $\delta^{15}\text{N}(\text{NO}_3^-)$ was calculated as $\delta^{15}\text{N}(\text{HNO}_3) = \delta^{15}\text{N}(\text{NO}) = 19±3‰$ (Savarino et al., 2007). Once deposited, this nitrate is influenced by UV photolysis, whereby the $^{14}\text{NO}_3^-$ isotopologue is removed faster than the $^{15}\text{NO}_3^-$ isotopologue (Berhanu et al., 2014), leading to enrichment of $^{15}\text{N}^{15}\text{NO}_3^-$ in the remaining nitrate. On the inland Antarctic plateau, we assume that a single and irreversible process of NO_3^- loss occurs, because the physical release such as volatilization of nitrate leads to only a minor net mass loss (Erbland et al., 2013).

To quantify the effect of nitrate loss related to photolysis, the $^{15}\text{N}^{14}\text{N}$ fractionation factor ($^{15}\varepsilon$) is expressed, based on a Rayleigh model, as follows: $\ln(\delta^{15}\text{N}_0 + 1) = ^{15}\varepsilon \ln f + \ln(\delta^{15}\text{N}_0 + 1)$, where $\delta^{15}\text{N}_0$ and $\delta^{15}\text{N}_f$ denote δ values for initial and remaining NO_3^-, respectively; and f is the remaining mass fraction of NO_3^-. (Blunier et al., 2005). The remaining NO_3^- mass fraction f can be evaluated using measured $\delta^{15}\text{N}(\text{NO}_3^-)$ values from this study, assuming an initial $\delta^{15}\text{N}_0$ value of 19±3‰; (Savarino et al., 2007), and an $^{15}\varepsilon$ for UV photolysis of nitrate, based on laboratory experiments simulated for the Dome C site (~47.9±6.8‰, Berhanu et al., 2014). Thus, the remaining nitrate mass fraction was calculated to be 11±5%, 15±6%, 5±3%, 23±8%, 32±9%, and 13±5% for sites DF1, NDF, Plateau S, S80, Fuji Pass, and DF2, respectively. These values are based on stratospheric input only. If tropospheric sources are also significant, the results will need to be revised accordingly.

In contrast, it is oversimplifying to apply only an $^{15}\varepsilon$ related to photolysis of NO_3^-, when calculating f at coastal sites in Antarctica. This is because sublimation and redistribution of recycled NO_3^- affect both NO_3^- concentrations and $\delta^{15}\text{N}(\text{NO}_3^-)$. In fact, the $\delta^{15}\text{N}(\text{NO}_3^-)$ values at coastal sites (S30, H42, H68, H80, H108 and H128) ranged from ~18.7‰ to 14.2‰ (Table 1 and Fig. 2d); these values were lower than $\delta^{15}\text{N}(\text{NO}_3^-)$ values of nitrate from the stratosphere (19±3‰; (Savarino et al., 2007)). This suggests that other factors influence the $\delta^{15}\text{N}(\text{NO}_3^-)$ deposited at coastal sites. These lower $\delta^{15}\text{N}(\text{NO}_3^-)$ values can be explained by nitrogen dynamics and the redistribution of nitrate occurring in Antarctica. For example, the $\delta^{15}\text{N}(\text{NO}_3^-)$ values of atmospheric nitrate in spring in Antarctica are comparatively low ($\delta^{15}\text{N} = -32.7±8.4‰$ (Savarino et al., 2007)). Such re-emitted NO_3^- inland transported to coastal sites via katabatic winds would result in lower $\delta^{15}\text{N}(\text{NO}_3^-)$ values observed in coastal snow. Furthermore, nitrate concentrations observed in the coastal surface snow samples from S30, H42, H68, H88, H108 and H128 along the JARE57 traverse showed a 3-fold variation (Fig. 2c). The $\delta^{15}\text{N}(\text{NO}_3^-)$ from surface snow at sites S30 to H108 exhibited relatively small variation, ranging from ~18.7 to ~6.2‰, while the $\delta^{15}\text{N}(\text{NO}_3^-)$ value at H128 was higher (14.2‰) than for other samples (Fig. 2d; Table 1). Given that $\delta^{15}\text{N}(\text{NO}_3^-)$ values in the coastal snow are lower than in nitrate from the stratosphere, the low values of $\delta^{15}\text{N}(\text{NO}_3^-)$ are likely related to the redistribution of nitrate. Thus, the main process determining

Fig. 2. Altitude (a), snow accumulation rate (Hoshina et al., 2016) (b), nitrate concentration (c), and nitrogen isotopic composition of nitrate (d) as a function of latitude within East Antarctica. For (c) and (d), colors of plots represent the sampling depth and Traverse (Black: JARE57 (0–50 cm), Blue: JARE54 (0–80 cm), Green: JARE54 (0–50 cm) and Red: JARE54 (0–30 cm)).
NO$_3^-$ concentrations in the coastal area is probably the redistribution (i.e., (i) vertical redistribution of NO$_3^-$ within the snowpack driven by nitrate photolysis; (ii) horizontal redistribution via advective transport of emissions (NO$_x$ and HNO$_3$) and re-deposition further downwind or in near-coastal areas (Savarino et al., 2007; Frey et al., 2009) of re-oxidized NO$_x$ emitted via photolysis of nitrate in the snowpack, further inland. This explains the inhomogeneity in nitrate concentrations on the surface snow at the coastal sites.

Comparison with other sites in East Antarctica

Figure 3a shows relationships among δ^{15}N(NO$_3^-$) and A values along three different traverses: from Syowa station to Dome Fuji station (this study), from Dumont d’Urville station to Vostok, passing through Dome C (Erbland et al., 2013), as well as from the East Antarctic coast to Dome A (Shi et al., 2015). The A values for Fuji pass, NDF, Plateau S, and S80 were not directly estimated in this study; they were estimated based on an extrapolation of a linear regression between A and altitude. The data from Shi et al. (2015) were compared as concentration-weighted averages for the same sample depth with our samples. Because sampling depths at the coastal sites of Erbland et al. (2013) were not the same as our samples (i.e., they were shallower than 30 cm), a weighted average of all samples measured in their study was calculated (Fig. 3). Given that the contribution of nitrate photolysis is considered to be minor at coastal sites (Savarino et al., 2007), the difference in value related to this sampling depth difference is likely to be small. Overall, the trends in δ^{15}N(NO$_3^-$) values and A were similar among all three traverses, yielding a regression line with a slope and intercept of 4146.2 \pm 279.7 and 15.1 \pm 7.4 ($R^2 = 0.84$), respectively (Fig. 3a). We conclude that spatial variation in δ^{15}N(NO$_3^-$) is caused by different contributions of UV photolyzed nitrate to the snowpack. This redistribution of nitrate can be characterized as a function of A throughout East Antarctica.

The relationship between Δ^{17}O values of nitrate and A along the two JARE traverses (JARE54 and 57; this study), as well as the Erbland et al. (2013) traverse and a snow pit from the Shi et al. (2015) traverse are shown in Fig. 3b. The Δ^{17}O values of nitrate collected on JARE57 (S30, H42, H68, H88, H108 and H128) ranged from 27.8 to 34.0‰ (Table 1), which is in good agreement with coastal sites data from Erbland et al. (2013) and Shi et al. (2015) (Fig. 3b). Results from the samples collected on JARE54 were also generally consistent with those from previous traverses (Fig. 3b). However, values for three samples (S80, Fuji pass, and DF2) ranged from 13.2 to 20.3‰, i.e., lower than for JARE54 and earlier traverses. The sampling dates of DF1 and DF2 differed by several days, whereas the places are only a few meters from each other. In addition, the NO$_x^-$ concentration and δ^{15}N(NO$_3^-$) values of samples DF1 and DF2 were similar. Interestingly, there was a large difference of Δ^{17}O(NO$_3^-$) between DF1 and DF2. Low Δ^{17}O(NO$_3^-$) values of nitrate in the surface snow cannot be explained by the Δ^{17}O(NO$_3^-$) values of atmospheric nitrate, which has a summer minimum (~20‰; Savarino et al., 2007). It is also unlikely that analytical errors caused these low Δ^{17}O(NO$_3^-$) values, because the measurements of standards and blank were normal. Isotopic exchange between the sample’s nitrate and water at some stage during storage or analysis has also been excluded, given that the half-life for oxygen isotope exchange under natural conditions (25°C, pH 7) is estimated to be around 5.5 x 109 years (Kaneko and Poulson, 2013). Thus, it is difficult to ex-
plain these low $\Delta^{17}O(NO_3^-)$ values in S80, Fuji pass, and DF2 samples from JARE54. Similarly unexpected low oxygen isotopic compositions ($\delta^{18}O(NO_3^-)$ values for that study) were also reported in ice cores drilled at Lomonosovfonna, Svalbard (Vega et al., 2015). Future study is clearly needed to test the spatial extent and variation of these unexpectedly low oxygen isotope values in snow at inland sites. Perhaps they are related to the spatiotemporal distribution of snow. Except for the low values of $\Delta^{17}O(NO_3^-)$ in nitrate from these three samples, the $\Delta^{17}O(NO_3^-)$ values of nitrate and its relationship to Δ between Syowa and Dome Fuji were generally consistent with other traverses.

Implications for the use of nitrate as an ice core proxy

Nitrates concentrations in the Talos Dome ice core were proposed as a solar activity proxy for the Holocene. Such interpretation is supported by insignificant loss of nitrate in snow pit material at the Talos Dome site (Traversi et al., 2012). Based on the linear regression between A^{-1} and $\delta^{15}N(NO_3^-)$ values derived in this study (Fig. 3a), for a snow accumulation rate of ca. 72 kg m$^{-2}$ year$^{-1}$ at Talos Dome, the $\delta^{15}N(NO_3^-)$ value at Talos Dome is estimated to be 56.5 \pm 8.6‰. This is higher than for nitrate derived from the stratosphere (19 \pm 3‰; Savarino et al., 2007), suggesting that the Talos Dome site must be influenced by UV photolysis. Whatever the case, reconstruction of past solar activity using nitrate concentrations in ice cores requires careful consideration given that vertical and/or horizontal redistribution of nitrate is occurring in this region.

In addition to $\delta^{15}N(NO_3^-)$ values, it is worth mentioning the possible application of oxygen isotopic compositions of nitrate for the Antarctic samples. Whereas atmospheric nitrate inherits a large positive oxygen isotopic anomaly (17O excess) from ozone, other oxidants such as OH possess lower $\Delta^{17}O$ values. In particular, seasonal variation of $\Delta^{17}O$ values of sulfate and nitrate in coastal Antarctica suggest that $\Delta^{17}O$ values were controlled by oxidant species and not by seasonal changes in $\Delta^{17}O$ values of O_3 (Ishino et al., 2017). Thus, the $\Delta^{17}O$ of nitrate in Antarctic ice cores has the potential to reconstruct historical changes in relative abundance of atmospheric O_3 and HO_3 over long time periods, based on the WACIS Divide ice core (Sofen et al., 2014). However, similar to nitrogen, oxygen isotopic compositions of nitrate are also changed by post depositional processes, especially at sites which have low accumulations of snow. Recently, a chemical model of nitrate behavior at the air-snow interface on the East Antarctic Plateau has been developed, to reconstruct $\Delta^{17}O(NO_3^-)$ values in the atmosphere (Erlbrand et al., 2015). Our new traverse data (Fig. 3b) will provide additional constraints to parameters used in such a chemical model. In turn, this will help establish the mechanisms contributing to the low $\Delta^{17}O(NO_3^-)$ values in inland areas. The determination of past atmospheric $\Delta^{17}O(NO_3^-)$ values from ice core analysis, coupled with global atmospheric chemical transport model such as GEOS-Chem, which quantify atmospheric nitrate formation pathways (Alexander et al., 2009), provides the scope for reconstructing past atmospheric oxidizing capacity and its relationship to past global changes.

SUMMARY

We report spatial variations in NO$_3^-$ isotopic compositions from coastal to inland sites in eastern Dronning Maud Land, East Antarctica. Although the NO$_3^-$ concentrations of surface snow between coastal and inland sites ranged from 40.0 to 130.8 μg L$^{-1}$, without explicit trends with latitude, the $\delta^{18}O(NO_3^-)$ values in the surface snow increased along the traverse from coastal to inland sites, ranging from -19.4 to 165.5‰. Based on a Rayleigh model, the remaining nitrate mass fraction was calculated to vary from 5 to 32% at sites DF1, NDF, Plateau S, S80, Fuji Pass, and DF2. This suggests that, at these inland sites, between 68 and 95% of nitrate was removed via UV photolysis of the snowpack. In contrast, the $\delta^{15}N(NO_3^-)$ values at coastal sites were lower than $\delta^{15}N$ values of stratospheric nitrate, exhibiting a large variation in nitrate concentrations but a small variation in $\delta^{15}N(NO_3^-)$ values. This indicates that the horizontal redistribution via advective transport of nitrate has an important effect on nitrate concentrations in surface snow at coastal sites. The relationship between the isotopic values ($\delta^{15}N(NO_3^-)$ and $\Delta^{17}O(NO_3^-)$) and snow accumulation rate is consistent with previous traverses across East Antarctica, implying that UV-driven post-depositional loss and horizontal redistribution occur similarly throughout East Antarctica.

Acknowledgments—We thank the members of JARE54 and JARE57 traverse teams for assistance with fieldwork. We also thank Kazuki Kamezaki, Asuka Tsuruta, Sakiko Ishino, and Yoshio Nuñez Palma (Tokyo Institute of Technology) for assistance with laboratory experiments and data presentations. Thoughtful and constructive reviews by Becky Alexander and an anonymous reviewer led to significant improvements to the paper. This work is supported by the Japan Society for the Promotion of Science (JSPS): Grants-in-Aid for Scientific Research 16H05884 (S.H.), 16H04947 (S.H.), 26550013 (R.U.), and 17H06105 (N.Y.) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT). The JARE57 traverse was partially supported by the System-inspired Leaders in Material Science (SiMS) Program, and the Program for Leading Graduate Schools of Osaka Prefecture University. We thank Dr. Trudi Semeniuk from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.
REFERENCES

SUPPLEMENTARY MATERIALS
URL (http://www.terrapub.co.jp/journals/GJ/archives/data/52/MS519.pdf)
Table S1