Fisheries for Global Welfare and Environment
In the last 100 years, humans have confronted a crisis larger than any faced since we first walked the Earth. The ever-expanding human population and increasing demands for natural resources have caused turbulence in the global economy and disruptions in the food supply. As our population continues to grow in the coming years, food shortages together with environmental pollution and habitat destruction will continue to confront us. Human activity appears to be causing changes in climate that affect both the atmosphere and the oceans. Because of increased pressures on terrestrial food production in an uncertain climate with fluctuating rainfall, continued reliance on marine and freshwater food resources will be necessary.

Wise utilization of food resources in the sea could help alleviate the crisis currently facing humanity by providing sustainable fisheries resources. However, over-exploitation and destruction of marine environments are reducing the potential of the ocean to provide food resources and are impacting the overall resilience of marine systems. Scientific knowledge can help mitigate the negative effects of humans on the global ocean, so fisheries scientists need to provide the leadership necessary to provide the natural resources for future human welfare.

The old proverb in Japan “sui gyo no majiwari” speaks of “the friendship of water and fish” as being a very close and inseparable relationship. However, now we must consider ourselves as one more member of this ancient relationship between fish and their environment who has a great responsibility to look after both the fish and the water they live in. As fisheries scientists, we must lead the way to make this “majiwari” continue long into the future.

Fisheries science began as an applied science that studied fisheries and fisheries-related industries. From its beginning, fisheries science has greatly expanded into a wide range of aquatic sciences including disciplines such as fish biology, aquaculture, biotechnology, biodiversity, ecosystems, and environmental research, as well as socio-economics and post-harvest technology. Thus, we can define fisheries science as an integrated science that studies the entire aquatic environment. Aquatic resources are not merely seafood, but include biotic and abiotic resources such as medicine, genetic resources, water, minerals, and energy, as well as landscapes and tourism that also have aesthetic and cultural value. To sustainably utilize all these resources, we need to integrate all aspects of fisheries science and apply this information to policy-making.

The Japanese Society of Fisheries Science, established in 1932 with a 76 year history, hosted the Fifth World Fisheries Congress in Yokohama in October 2008. This congress was the largest meeting on fisheries science held to date. The Congress had nine sessions and 50 subsessions covering almost every discipline related to fisheries science. The steering committee of the Congress decided to publish a book of papers that represented the full range of subjects covered by the plenary speakers and invited keynote speakers from all regions of the world.

The objective of this book is to commemorate the subjects covered by the Congress and, at the same time, to help provide a guideline for world fisheries and fisheries science in the future, with the hope of helping to improve world human welfare. Therefore, the editors of the book urged the contributors to express their ideas and opinions about the problems and future perspectives in fisheries science together with a scientific review of their own field of research. We hope the book will be useful for policy-makers as well as students and researchers of fisheries science. We express our sincere thanks to all the authors for their precious contributions and to the referees from around the world for their valuable suggestions and constructive comments that helped to make the book a reality.

July 2008

Katsumi Tsukamoto
Tomohiko Kawamura
Toshio Takeuchi
T. Douglas Beard, Jr.
Michel J. Keiser
Editors

Katsumi Tsukamoto
Ocean Research Institute, the University of Tokyo, 1-15-1 Minamidai, Nakano-ku, Tokyo 164-8639, Japan.
The Japanese Society of Fisheries Science (JSFS)

Tomohiko Kawamura
Ocean Research Institute, the University of Tokyo, 1-15-1 Minamidai, Nakano-ku, Tokyo 164-8639, Japan.
The Japanese Society of Fisheries Science (JSFS)

Toshio Takeuchi
Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan.
The Japanese Society of Fisheries Science (JSFS)

T. Douglas Beard, Jr.
US Geological Survey, National Biological Information Infrastructure, MS-302, 12201 Sunrise Valley Drive, Reston VA 22030, USA.
The American Fisheries Society (AFS)

Michel J. Kaiser
School of Ocean Sciences, College of Natural Sciences, University of Wales-Bangor, Anglesey, LL59 5AB, UK.
The Fisheries Society of The British Isles (FSBI)
Contributors

Renato F. Agbayani (pages 435–448)
Aquaculture Department, Southeast Asian Fisheries Development Center (SEAFDEC), Tigbauan, Iloilo 5021, the Philippines

Piti Amparyup (pages 221–239)
Shrimp Molecular Biology and Genomics Laboratory, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand

Donald M. Anderson (pages 317–334)
Biology Department, MS #32, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA

Allen H. Andrews (pages 103–120)
Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, CA 95039, USA

Takashi Aoki (pages 263–276)
Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan

Hitoshi Araki (pages 153–167)
Eawag, Swiss Federal Institute of Aquatic Science and Technology, Center of Ecology, Evolution and Biogeochemistry, Department of Fish Ecology and Evolution, 6047 Kastanienbaum, Switzerland

Melba G. Bondad-Reantaso (pages 197–207)
Fisheries and Aquaculture Department, Food and Agriculture Organization of the United Nations (FAO) Viale delle Terme di Caracalla, 00153 Rome, Italy

Charles-Andre Bost (pages 121–137)
Centre d’Etudes Biologiques de Chizé, CEBC-CNRS UPR 1934, F-79360, Villiers en Bois, France

C. Leigh Broadhurst (pages 57–76)
Nuclear Magnetic Resonance Facility, Environmental Quality Laboratory, U.S. Department of Agriculture Agricultural Research Service, Beltsville, MD, USA

Laura L. Brown (pages 277–288)
Marine Ecosystems and Aquaculture Division, Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada

Louis du Buisson (pages 17–26)
Zoology Department and MA-RE Institute, University of Cape Town, P. Bag X3, 7701 Rondebosch, Cape Town, South Africa

Douglas S. Butterworth (pages 381–397)
MARAM (Marine Resource Assessment and Management Group), Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, South Africa
Gregor M. Cailliet (pages 103–120)
Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, CA 95039, USA

Chen-Tung Arthur Chen (pages 307–316)
Institute of Marine Geology and Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan, Republic of China

Thia-Eng Chua (pages 87–102)
East Asian Seas Partnership Council, Partnership in Environmental Management for the Seas of East Asia (PEMSEA), c/o Dept. Environmental and Natural Resources Compound, Visayas Avenue, Quezon City 1100, the Philippines

Michael A. Crawford (pages 57–76)
Institute of Brain Chemistry and Human Nutrition, London Metropolitan University, London N7 8DB, UK

Stephen C. Cunnane (pages 57–76)
Research Center on Ageing, University of Sherbrooke, Quebec, Canada

William S. Davidson (pages 77–86)
Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada

Jiechun Deng (pages 289–295)
College of Food Science and Technology, Shanghai Ocean University, Shanghai 200090, China

Jean Dhont (pages 449–460)
Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Rozier 44, 9000 Ghent, Belgium

John G. Field (pages 17–26)
Zoology Department and MA-RE Institute, University of Cape Town, P. Bag X3, 7701 Rondebosch, Cape Town, South Africa

Claudio Galli (pages 57–76)
Department of Pharmacological Sciences, University of Milan, Italy

Kebreab Ghebremeskel (pages 57–76)
Institute of Brain Chemistry and Human Nutrition, London Metropolitan University, London N7 8DB, UK

Lewis G. Halsey (pages 121–137)
School of Human and Life Sciences, Roehampton University, London, SW15 4JD, UK

Yves Handrich (pages 121–137)
Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS-ULP, Département Ecologie, Physiologie et Ethologie (DEPE), 23 rue Becquerel, F-67087 Strasbourg cedex 2, France

Nicolas Hanuise (pages 121–137)
Centre d’Etudes Biologiques de Chizé, CEBC-CNRS, UPR 1934, F-79360, Villiers en Bois, France
Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178 CNRS-ULP, Département Ecologie, Physiologie et Ethologie (DEPE), 23 rue Becquerel, F-67087 Strasbourg cedex 2, France
Contributors

Ray Hilborn (pages 45–56)
School of Aquatic and Fishery Sciences, Box 355020, University of Washington, Seattle, WA 98195-5020, USA

Ikuo Hirono (pages 263–276)
Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan

Holm Holmsen (pages 57–76)
Department of Biomedicine, University of Bergen, Norway

Mohammed Anwar Hossain (pages 297–306)
National Research Institute of Fisheries Science, Fukuura, Yokohama 236-8648, Japan

William Huin (pages 121–137)
Centre d’Etudes Biologiques de Chizé, CEBC-CNRS, UPR 1934, F-79360, Villiers en Bois, France

Jun Iguchi (pages 297–306)
Food and Agricultural Materials Inspection Center Headquarter, Shintoshin, Saitama 330-9731, Japan

Audrey Jaeger (pages 121–137)
Centre d’Etudes Biologiques de Chizé, CEBC-CNRS, UPR 1934, F-79360, Villiers en Bois, France

Astrid Jarre (pages 17–26)
Zoology Department and MA-RE Institute, University of Cape Town, P. Bag X3, 7701 Rondebosch, Cape Town, South Africa

Stewart C. Johnson (pages 277–288)
Aquatic Animal Health Section, Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada

Ian A. Johnston (pages 241–262)
Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, Scotland, KY16 8LB, UK

Masahide Kaeriyama (pages 371–380)
Graduate School of Fisheries Science, Hokkaido University, 3-1-1 Minatocho, Hakodate 041-8611, Japan

Paulus Kainge (pages 17–26)
Ministry of Fisheries and Marine Resources, National Marine Information and Research Centre, PO Box 912, Swakopmund, Namibia

Hidehiro Kondo (pages 263–276)
Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan

Ben F. Koop (pages 77–86)
Department of Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada

Koji Kotani (pages 359–369)
Graduate School of International Relations, International University of Japan, 777 Kokusai-cho, Niigata 949-7277, Japan
Contributors

Philippe Koubbi (pages 121–137)
Laboratoire d’Océanographie de Villefranche (LOV), CNRS UMR 7093, Université Paris VI, Station Zoologique, La Darse, BP 28, 06230 Villefranche-sur-Mer, France

Marek R. Lipinski (pages 17–26)
Department of Environmental Affairs and Tourism, Marine and Coastal Management, P. Bag X3, 8012 Rogge Bay, Cape Town, South Africa

Daniel J. Macqueen (pages 241–262)
Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, Scotland, KY16 8LB, UK

Akihiro Mae (pages 425–434)
Fisheries Policy Planning Department, Fisheries Agency, Government of Japan, 1-2-1 Kasumigaseki, Chiyoda, Tokyo 100-8907, Japan

Mitsutaku Makino (pages 359–369)
National Research Institute of Fisheries Science, Fisheries Research Agency, 2-12-4, Fukuura, Yokohama 236-8648, Japan

Gudrun Marteinsdóttir (pages 27–43)
Institute of Biology, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland

Hiroyuki Matsuda (pages 359–369)
Faculty of Environment and Information Sciences, Yokohama National University, 79-7, Tokiwadai, Yokohama 240-8501, Japan

Yoshiaki Matsuda (pages 413–423)
Emeritus Professor of Kagoshima University, 5-72 Senshu-Kitanomaru, Akita 010-0872, Japan

Tatsuro Matsuoka (pages 169–180)
Faculty of Fisheries, Kagoshima University, Kagoshima, Japan

Coleen L. Moloney (pages 17–26)
Zoology Department and MA-RE Institute, University of Cape Town, P. Bag X3, 7701 Rondebosch, Cape Town, South Africa

Atsushi Namikoshi (pages 297–306)
Food and Agricultural Materials Inspection Center Headquarter, Shintoshin, Saitama 330-9731, Japan

Ichiro Nomura (pages 1–16)
Fisheries and Aquaculture Department, Food and Agriculture Organization (FAO) of the United Nations, Viale delle Terme di Caracalla, 00153 Rome, Italy

Tomoyuki Okutsu (pages 209–219)
Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan

Lasse Mork Olsen (pages 181–196)
Trondhjem Biological Station, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
Yngvar Olsen (pages 181–196)
Trondheim Biological Station, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway

Heidi Pardoe (pages 27–43)
Institute of Biology, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland
Marine Research Institute of Iceland, Skulagata 4, 101 Reykjavik, Iceland

André E. Punt (pages 139–152)
School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, WA 98195, USA

Kenneth Ruddle (pages 399–411)
School of Policy Studies, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan

Mudjeekeewis D. Santos (pages 263–276)
Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan

Letten F. Saugstad (pages 57–76)
Institute of Neuroscience, University of Oslo, Norway

Walter F. Schmidt (pages 57–76)
Nuclear Magnetic Resonance Facility, Environmental Quality Laboratory, U.S. Department of Agriculture Agricultural Research Service, Beltsville, MD, USA

William Seaman (pages 335–349)
Emeritus Professor of University of Florida, Box 925, Montreat, North Carolina 28757, USA

Andrew J. Sinclair (pages 57–76)
School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Australia

Kunlaya Somboonwiwat (pages 221–239)
Shrimp Molecular Biology and Genomics Laboratory, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

Tore Stroemme (pages 17–26)
Institute for Marine Research, Bergen, Norway

Rohana P. Subasinghe (pages 197–207)
Fisheries and Aquaculture Department, Food and Agriculture Organization of the United Nations (FAO), Viale delle Terme di Caracalla, 00153 Rome, Italy

Premruethai Supungul (pages 221–239)
Shrimp Molecular Biology and Genomics Laboratory, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand

Jun Takahashi (pages 221–239)
Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 608-8502, Japan
Contributors

Tomokazu Takano (pages 263–276)
Laboratory of Genome Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan

Yasuharu Takashima (pages 297–306)
Food and Agricultural Materials Inspection Center Headquarter, Shintoshin, Saitama 330-9731, Japan

Yutaka Takeuchi (pages 209–219)
Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan

Sureerat Tang (pages 221–239)
National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand

Anchalee Tassanakajon (pages 221–239)
Shrimp Molecular Biology and Genomics Laboratory, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

Sirinit Tharntada (pages 221–239)
Shrimp Molecular Biology and Genomics Laboratory, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

Joebert D. Toledo (pages 435–448)
Aquaculture Department, Southeast Asian Fisheries Development Center (SEAFDEC), Tigbauan, Iloilo 5021, Philippines

Haruhiko Toyohara (pages 221–239)
Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 608-8502, Japan

Tipachai Vatanavicharn (pages 221–239)
Shrimp Molecular Biology and Genomics Laboratory, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

Xichang Wang (pages 289–295)
College of Food Science and Technology, Shanghai Ocean University, Shanghai 200090, China

Shugo Watabe (pages 241–262)
Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo 113-8657, Japan

Takeshi Yabu (pages 297–306)
National Research Institute of Fisheries Science, Fukuura, Yokohama 236-8648, Japan

Michiaki Yamashita (pages 297–306)
National Research Institute of Fisheries Science, Fukuura, Yokohama 236-8648, Japan

Yumiko Yamashita (pages 297–306)
National Research Institute of Fisheries Science, Fukuura, Yokohama 236-8648, Japan
Contributors

Tetsuo Yanagi (pages 351–358)
Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580, Japan

Goro Yoshizaki (pages 209–219)
Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan

Jingjing Zhang (pages 289–295)
College of Food Science and Technology, Shanghai Ocean University, Shanghai 200090, China
Contents

Preface ... v
Editors .. vi
Contributors .. vii

PLenary Lectures

Fisheries Management: Status and Challenges ... 1
Ichiro Nomura
1. Introduction ... 2
2. Setting the Scene: the Status of World Fisheries and Aquaculture 2
3. Main Challenges and Ways Forward ... 4
3.1. Understanding fisheries and their environment 5
3.2. Reconciling utilization and conservation .. 6
3.3. Considering social and equity issues ... 8
3.4. Assessing incentive structures ... 8
3.5. Linking fisheries management with trade and with marketing standards 10
3.6. Enhancing institutions and governance for management 12
3.7. Engaging with developing countries .. 14
4. Conclusion ... 15
References ... 15

Exploring the BOFFFF Hypothesis Using a Model of Southern African Deepwater Hake (Merluccius paradoxus) .. 17
John G. Field, Coleen L. Moloney, Louis du Buisson, Astrid Jarre, Tore Stroemme,
Marek R. Lipinski and Paulus Kainge
1. Introduction ... 18
2. The Fishery ... 18
3. The Model .. 20
4. Results and Discussion ... 21
5. Conclusion .. 23
References ... 24

Effects of Fishing on Inter and Intra Stock Diversity of Marine Resources 27
Gudrun Marteinsdóttir and Heidi Pardoe
1. Introduction ... 27
2. Inter-Stock Diversity ... 29
2.1. Effect of fishing on inter-stock diversity .. 29
2.2. Examples of inter-stock diversity .. 30
2.3. Examples of loss of inter-stock diversity 31
3. Intra-Stock Diversity ... 32
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1. Effects of fishing on intra-stock diversity</td>
<td>32</td>
</tr>
<tr>
<td>3.2. Examples demonstrating importance of maintaining intra-stock diversity</td>
<td>33</td>
</tr>
<tr>
<td>4. Future Goals of Fisheries Management</td>
<td>37</td>
</tr>
<tr>
<td>References</td>
<td>38</td>
</tr>
</tbody>
</table>

Knowledge on How To Achieve Sustainable Fisheries ... 45

Ray Hilborn

1. Introduction ... 45
2. Objectives and Defining “Well Managed” .. 46
2.1. Biological sustainability .. 47
2.2. Economically viability .. 47
3. Elements of Management ... 47
4. Historical Evolution of Management Practice ... 48
4.1. Industrial fisheries .. 48
4.2. Small-scale and community-based management ... 52
4.3. Other elements of management ... 53
5. Discussion .. 53
References .. 55

The Role of Docosahexaenoic and Arachidonic Acids as Determinants of Evolution and Hominid Brain Development ... 57

1. Introduction: The challenge of the rise in brain disorders 58
2. Docosahexaenoic Acid .. 58
3. DHA Function—a question of liquidity? ... 59
4. Evolution of *Homo sapiens* .. 60
5. DHA in Neural Signalling Systems .. 62
5.1. A special case for DHA as a receptor domain as targets for psychotropic drugs .. 62
5.2. Docosanoids .. 63
5.3. The extreme conservation of DHA in neural signalling systems 64
6. A Hypothesis on the Molecular Dynamics and π-Electron Function in DHA 64
6.1. Nuclear overhauser enhancement .. 65
6.2. The brain as an electrical machine .. 65
6.3. Is DHA a quantum gate to control transmission of electrical information? 67
7. A 600 Million Year Track Record in Neural Signalling 68
8. DHA and Neural Pathways? .. 70
9. Darwin and Conditions of Existence ... 70
10. Reason for Concern on the Food System and the Brain 71
11. Implications .. 72
12. Conclusion .. 72
References .. 72

Genomics and the Genome Duplication in Salmonids ... 77

Ben F. Koop and William S. Davidson

1. Introduction .. 77
2. Genome Duplications ... 79
3. Expressed Sequence Data .. 80
4. Repeated Regions ... 82
5. Discussion ... 83
References ... 85

A Tale of Two Initiatives: Integrated Coastal Management in Xiamen and Batangas Bay Region ... 87
Thia-Eng Chua

1. Introduction ... 88
2. Initiatives at the Local Level ... 88
3. Assessment of Key Activities and Achievements 90
3.1. Implementing activities to strengthen coastal governance 91
3.2. Implementing a long-term coastal strategy and action plans 91
4. Conclusions Drawn from the Two Initiatives 99
5. Codification of ICM ... 100
5.1. Governance ... 100
5.2. Strategic action programs ... 101
5.3. ICM Code ... 101
5.4. Documentation and reporting .. 101
6. The Way Forward .. 101
References ... 102

KEYNOTE 1: FISHERIES AND FISH BIOLOGY

Age-validated Longevity of Fishes: Its Importance for Sustainable Fisheries 103
Gregor M. Cailliet and Allen H. Andrews

1. Introduction ... 104
2. The Importance of Age Validation in Estimating Longevity (Lifespan) 105
3. The Importance of Lifetime Fecundity (Reproductive Output) 106
4. Deep-water Rockfish Age Determination, Validation, and Longevity ... 107
5. Deep-water Rockfish Age-Specific and Lifetime Reproductive Output 110
6. Conclusions ... 114
References ... 115

Monitoring Prey Availability via Data Loggers Deployed on Seabirds: Advances and Present Limitations ... 121
C. A. Bost, A. Jaeger, W. Huin, P. Koubbi, L. G. Halsey, H. Hanuise and Y. Handrich

1. Introduction ... 122
2. Foraging at Sea .. 123
3. Determining How Seabirds Feed 125
3.1. Feeding recorders .. 125
4. Changes in Foraging Behaviour as Proxies of Feeding Success 127
4.1. Volant seabirds ... 128
4.2. Diving birds .. 128
4.3. Parameters at depth ... 128
5. Seabird-Derived Estimates of Prey Availability Compared to Survey Estimates ... 130
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1. Comparison with conventional sampling</td>
</tr>
<tr>
<td>6. Discussion</td>
</tr>
<tr>
<td>6.1. Applications to conservation</td>
</tr>
<tr>
<td>6.2. Can we estimate prey availability from the monitoring of instrumented predators at sea?</td>
</tr>
<tr>
<td>6.3. Next steps</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>

Refocusing Stock Assessment in Support of Policy Evaluation | 139 |

André E. Punt

1. Introduction | 139 |
2. Management Strategy Evaluation | 141 |
3. Implications of MSE for Stock Assessment Science | 142 |
3.1. Multispecies and spatial models | 142 |
3.2. The role of parameter estimation and weighting of models | 144 |
3.3. Complex versus simple models | 146 |
4. Concluding Remarks | 147 |
References | 149 |
Appendix: A simple MSE analysis | 151 |

Hatchery Stocking for Restoring Wild Populations: A Genetic Evaluation of the Reproductive Success of Hatchery Fish vs. Wild Fish | 153 |

Hitoshi Araki

1. Introduction | 154 |
2. The Study System | 154 |
3. DNA Fingerprinting and Parentage Assignments | 156 |
4. Reproductive Success of Hatchery Fish | 156 |
5. Genetic Effects of Hatchery Rearing | 160 |
6. Effective Population Size | 161 |
7. Genetic Compensation between Life-History Forms | 162 |
8. Discussion | 162 |
References | 165 |
Appendix: Terminology | 167 |

A Review of Bycatch and Discard Issue Toward Solution | 169 |

Tatsuro Matsuoka

1. Introduction | 169 |
2. Definition of Terms | 170 |
3. Estimation of Bycatch and Discard Amounts | 170 |
4. True Problems of Bycatch and Discards | 172 |
5. Solutions to Bycatch and Discards | 174 |
5.1. Improvement in fishing technology | 174 |
5.2. Promotion of landing | 176 |
5.3. Researches on sensory and behaviour | 177 |
6. Encouragement of Simple Assessment on Bycatch and Discards | 177 |
References | 178 |
KEYNOTE 2: AQUACULTURE

Environmental Impact of Aquaculture on Coastal Planktonic Ecosystems 181
Yngvar Olsen and Lasse Mork Olsen

1. Introduction .. 182
2. Quantification of Nutrient Emission from CAS ... 183
3. Characteristics and Fate of Nutrient Waste Components from CAS 185
4. Nutrient Waste Emission from Typical Salmon Farm 186
5. Nutrient Assimilation Capacity of Pelagic Ecosystems 188
5.1. Food web response .. 188
5.2. Hydrodynamics .. 191
5.3. Integrated scheme for food web and hydrodynamics 192
6. Monitoring and 3D Modelling of Nutrient Mixing 193
7. Concluding Remarks 195
References ... 195

Meeting the Future Demand for Aquatic Food through Aquaculture: the Role of Aquatic Animal Health .. 197
Melba G. Bondad-Reantaso and Rohana P. Subasinghe

1. Introduction .. 197
2. International Trade .. 198
3. Biosecurity Lapses and TAADs—Significant Constraints to Aquaculture Production 199
4. Strategies for Reducing the Risks of Aquatic Animal Diseases 199
4.1. Compliance with international codes, regional guidelines through national strategies and other implementation mechanisms 200
4.2. Increasing biosecurity and bio-security awareness at all levels 200
4.3. Empowering farmers to manage disease and other risks through implementation of better management practices 202
4.4. Scientific research and advice 203
5. Emerging Issues ... 204
5.1. Responsible use of chemo-therapeutants in aquaculture 204
5.2. Climate change and disease ecology 204
5.3. Fish welfare and fish health 204
5.4. Improving and strengthening fisheries-veterinarian dialogue and cooperation 204
5.5. Certification of aquatic animal health service providers 205
6. Conclusions .. 205
References ... 206

KEYNOTE 3: BIOTECHNOLOGY

Spermatogonial Transplantation in Fish: Production of Trout Offspring from Salmon Parents ... 209
Tomoyuki Okutsu, Yutaka Takeuchi and Goro Yoshizaki

1. Introduction .. 209
2. Salmon Recipients Produce Donor-Derived Trout Sperm and Eggs Following Interspecies Transplantation of Spermatogonia 210
3. Sterile Triploid Salmon Male Recipients Produce Only Trout-Offspring 212
4. Successful Production of Only Trout Offspring from Sterile Salmon Parents . . 215
References ... 218

Biotechnology of Marine Invertebrates—Recent Advances in Shrimp and Shellfish ... 221
Anchalee Tassanakajon, Tipachai Vatanavicharn, Premruethai Supungul, Sureerat Tang, Piti Amparyup, Kunlaya Somboonwiwat, Sirinit Thamtada, Jun Takahashi and Haruhiko Toyohara
1. Shrimp Antimicrobial Peptides: Sequence Diversity and Functional Characteristics of Different Isoforms .. 222
1.1. Introduction .. 222
1.2. AMPs identified from the Penaeus monodon EST Database 222
1.3. Penaeidins ... 223
1.4. Crustins .. 225
1.5. Antilipopolysaccharide factors 228
1.6. The potential use of antimicrobial peptides for disease control in aquaculture . 231
2. Biominalization of Marine Organisms .. 231
2.1. Biominalization ... 231
2.2. Structure of shell .. 232
2.3. Function of organic substances for biominalization 233
2.4. Common proteins involved in biominalization among animals 235
2.5. Transportation of Ca²⁺ for biominalization 235
2.6. Conclusions .. 236
References ... 236

Molecular Biotechnology of Development and Growth in Fish Muscle 241
Ian A. Johnston, Daniel J. Macqueen and Shugo Watabe
1. Introduction ... 241
2. Myogenic Genes of Biotechnological Interest 242
2.1. The MyoD gene family ... 243
2.2. Myostatin ... 244
2.3. Follistatin ... 247
2.4. The insulin-like growth factor system 247
2.5. Calpain/calpastatin .. 249
3. Embryonic Myogenesis .. 251
4. Postembryonic Myogenesis ... 252
5. Developmental Plasticity and Adult Growth 253
6. Temperature Acclimation Responses .. 255
7. Applications and Perspectives for Future Research 256
References ... 257

Molecular Innate Immunity in Teleost Fish: Review and Future Perspectives 263
Takashi Aoki, Tomokazu Takano, Mudjekeewis D. Santos, Hidehiro Kondo and Ikuo Hirono
1. Introduction ... 263
2. Mammalian Innate Immune Responses 264
2.3. Horse mackerel .. 300
2.4. Alaska pollack and related fishes 300
3. Elemental and Other Chemical Composition Analyses 302
4. Peptide Mass Mapping .. 304
5. Future Prospects .. 304
References ... 305

KEYNOTE 5: ECOSYSTEMS—LINKING CLIMATE CHANGE AND FISHERIES—

Effects of Climate Change on Marine Ecosystems 307
Chen-Tung Arthur Chen
1. Introduction .. 307
2. Effects of Sea Surface Warming and Sea Level Rise 308
3. Effects of Ocean Acidification .. 312
4. Effects of Changing the Stability of the Surface Mixed Layer . 313
5. Conclusion .. 313
References ... 315

KEYNOTE 6: FRESHWATER, COASTAL AND MARINE ENVIRONMENTS

Harmful Algal Blooms and Ocean Observing Systems: Needs, Present Status and Future Potential .. 317
Donald M. Anderson
1. Introduction .. 318
2. Harmful Algal Blooms .. 319
2.1. Paralytic shellfish poisoning in the Gulf of Maine 319
3. Observational and Analytical Needs for HAB Monitoring and Management .. 322
3.1. Sampling platforms ... 322
3.2. Toxin detection .. 325
3.3. Cell detection ... 327
3.4. Modeling and forecasting ... 329
4. Summary ... 330
References ... 331

Coastal Artificial Habitats for Fishery and Environmental Management and Scientific Advancement .. 335
William Seaman
1. Introduction .. 336
2. Overview of Trends .. 336
3. Key Sources of Information ... 338
5. Artificial Reef Influences on Fisheries and Ecosystems 343
6. Artificial Reef Applications in a Management Context 345
7. Discussion and Outlook ... 346
References ... 347
Contents

“Sato-Umi”—A New Concept for Sustainable Fisheries 351
Tetsuo Yanagi
1. Introduction .. 351
2. Sato-Yama .. 351
3. Sato-Umi .. 352
4. Discussion .. 354
References ... 358

Keynote 7: Biodiversity and Management

Optimal Fishing Policies That Maximize Sustainable Ecosystem Services 359
Hiroyuki Matsuda, Mitsutaku Makino and Koji Kotani
1. Introduction .. 360
2. Optimal Fishing Policy That Maximizes Ecosystem Service 360
3. Optimal Fishing Policy with Process Uncertainty and Measurement Errors 362
4. Optimal Policy from Food Webs 364
5. From Fisheries Comanagement to Ecosystem Comanagement 367
6. Discussion .. 368
References ... 368

Ecosystem-Based Sustainable Conservation and Management of Pacific Salmon 371
Masahide Kaeriyama
1. Introduction .. 372
2. Carrying Capacity ... 372
3. Global Warming Effect 373
4. Ecosystem-Based Sustainable Conservation and Management 377
References ... 379

Some Lessons from Implementing Management Procedures 381
Douglas S. Butterworth
1. Introduction .. 381
2. Overarching Process-Related Aspects ... 383
2.1. Protocols .. 383
2.2. Robustness .. 384
2.3. Scheduling .. 385
2.4. Objectives .. 386
2.5. Data aspects .. 386
2.6. Organisation .. 387
3. Risk ... 387
4. Decision Rules .. 389
4.1. Form .. 389
4.2. Continuity .. 390
4.3. Model-based vs. empirical 390
5. Discussion .. 392
6. In Summary .. 393
References ... 394
Appendix: Basic Elements of the Management Procedure Approach 396
KEYNOTE 8: ECONOMICS AND SOCIAL SCIENCE

Reconsidering the Contribution of Fisheries to Society and Millennium Development Goals
Kenneth Ruddle

1. Introduction .. 399
2. Two Major Difficulties ... 401
3. The Old Assumptions in New Contexts .. 402
 3.1. The context of a globalized fish trade. ... 402
 3.2. The context of unsuitable approaches and models 404
4. Reconsidering Contributions .. 405
5. Reconsidering the MDGs ... 405
 5.1. Nearshore tropical fisheries and MDG 7, ensuring environmental sustainability 406
 5.2. Present MDG 8: The globalized fish trade and industrial fisheries 407
6. Conclusions ... 408
References .. 409

Advantages and Disadvantages of the Fisheries Trade 413
Yoshiaki Matsuda

1. Introduction ... 413
2. Shrimp .. 415
3. Tuna .. 417
4. Salmon .. 419
5. Issues in Imported Countries: A Case of Japan 420
6. Conclusion ... 421
References .. 422

KEYNOTE 9: EDUCATION AND INTERNATIONAL COOPERATION

Japan’s Fisheries Cooperation: Principle, Programs and Achievements 425
Akihiro Mae

1. Introduction ... 425
2. Principle .. 426
 2.1. Sustainable utilization ... 426
 2.2. Promotion of fisheries ... 427
 2.3. Resources management ... 427
 2.4. Scientific research and study .. 427
 2.5. Consideration on environmental aspect 427
3. Programs .. 427
 3.1. Multilateral approach ... 427
 3.2. Bilateral approach ... 428
4. Achievements ... 429
 4.1. FAO ... 429
 4.2. RFMOs .. 429
 4.3. Grant aid and Yen loan ... 429
Institutional Capacity Development for Sustainable Aquaculture and Fisheries: Strategic Partnership with Local Institutions

Renato F. Agbayani and Joebert D. Toledo

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>436</td>
</tr>
<tr>
<td>2. SEAFDEC-AQD R&D Framework</td>
<td>437</td>
</tr>
<tr>
<td>3. The Malalison Experience: Community-based Fishery Resources Management</td>
<td>438</td>
</tr>
<tr>
<td>3.1. Background and objectives</td>
<td>438</td>
</tr>
<tr>
<td>3.2. Capacity-building and social reform: preparations for socioeconomic, environmental and policy interventions</td>
<td>438</td>
</tr>
<tr>
<td>3.3. Project milestones</td>
<td>439</td>
</tr>
<tr>
<td>4. Institutional Capacity Development for Sustainable Aquaculture</td>
<td>440</td>
</tr>
<tr>
<td>4.1. Background and rationale</td>
<td>440</td>
</tr>
<tr>
<td>4.2. Project strategies</td>
<td>441</td>
</tr>
<tr>
<td>4.3. Project activities</td>
<td>441</td>
</tr>
<tr>
<td>4.4. Highlights of on-going projects</td>
<td>443</td>
</tr>
<tr>
<td>5. Problems Encountered</td>
<td>446</td>
</tr>
<tr>
<td>References</td>
<td>447</td>
</tr>
</tbody>
</table>

International Cooperation for Higher Education in Aquaculture and Fisheries Science

Jean Dhont

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>450</td>
</tr>
<tr>
<td>2. Education Policy and Reforms in Europe</td>
<td>450</td>
</tr>
<tr>
<td>2.1. The Lisbon declaration</td>
<td>450</td>
</tr>
<tr>
<td>2.2. The Bologna declaration and Bologna process</td>
<td>451</td>
</tr>
<tr>
<td>2.3. Implementation of the Bologna declaration</td>
<td>451</td>
</tr>
<tr>
<td>3. Fisheries & Aquaculture Education in Europe</td>
<td>453</td>
</tr>
<tr>
<td>3.1. Status of fisheries and aquaculture in Europe</td>
<td>453</td>
</tr>
<tr>
<td>3.2. The common fisheries policy</td>
<td>454</td>
</tr>
<tr>
<td>3.3. Specific education needs for the European fisheries and aquaculture sector</td>
<td>454</td>
</tr>
<tr>
<td>3.4. AquaTNET</td>
<td>456</td>
</tr>
<tr>
<td>4. International Cooperation for Higher Education</td>
<td>456</td>
</tr>
<tr>
<td>4.1. Perceptions of European higher education in other parts of the world third countries</td>
<td>457</td>
</tr>
<tr>
<td>4.2. ERASMUS Mundus</td>
<td>457</td>
</tr>
<tr>
<td>5. Conclusions</td>
<td>459</td>
</tr>
<tr>
<td>References</td>
<td>460</td>
</tr>
</tbody>
</table>

Index

461