TERRAPUB Journal of Oceanography

Journal of Oceanography, Vol. 56 (No. 1), pp. 103-116, 2000

Variability of Currents off the Northern Coast of New Guinea

Yoshifumi Kuroda*

Ocean Research Department, Japan Marine Science and Technology Center, 2-15 Natsushima, Yokosuka 237-0061, Japan

(Received 18 May 1998; in revised form 20 May 1999; accepted 24 May 1999)

Abstract: The variability of the New Guinea Coastal Current (NGCC) and New Guinea Coastal Undercurrent (NGCUC) were examined from one year time series of current data from ADCP moorings at 2°S, 142°E and 2.5°S, 142°E. Change in the hydrographic structure induced by monsoonal wind forcing was also examined from hydrographic data along the 142°E covering consecutively two winter seasons and two summer seasons. The westward NGCUC was observed to persist year around. The annual mean depth of the current core was 220 m, the mean speed of the zonal component was 54 cm/s with a standard deviation of 15 cm/s at the 2.5°S site. Velocity fluctuations at 20-30 day period were observed year around. Seasonal reversal of the surface intensified NGCC was clearly observed. In the boreal summer characterized by the southeasterly monsoon, westward currents of over 60 cm/s were dominant in the surface layer. The warm, low-salinity layer thickened at this time and sloped down toward the New Guinea coast from the equator. This surface water accumulation may be caused by onshore Ekman drift at the New Guinea coast, combined with weak Ekman upwelling at the equator. In the boreal winter, an eastward surface current developed to 100 cm/s extending down to 100 m depth in response to the northwesterly monsoonal winds. Coastal upwelling was indicated in this season and the surface water accumulated at the equator due to Ekman convergence. Shipboard ADCP data indicated that the NGCUC intensified in boreal summer as the width and depth of the NGCUC increased.


*Corresponding author E-mail: kuroday@jamstec.go.jp


[Full text] (PDF 1.2 MB)