NOTE

Variations in the stable carbon isotope ratios of *Zelkova serrata* leaves from roadside trees in Toyama City, Japan

YASUHIRO KIYOSU and MITSU KIDOGUCHI

Department of Environmental Biology and Chemistry, Toyama University, Toyama 930-8555, Japan

(Received October 27, 1999; Accepted April 26, 2000)

Nitrogen contents and stable carbon isotope ratios of *Zelkova serrata* leaves collected from roadside trees in Toyama City, Japan were measured in order to judge the stress due to water availability and nutrient efficiency. Furthermore, the source of urban atmospheric CO₂ was examined from the isotopic discrimination between *Zelkova serrata* leaves and CO₂ in the ambient air based on the correlation between carbon isotope ratio and content of CO₂, since there was no stress associated with the roadside trees. The carbon isotope ratio of roadside tree leaves decreases with increasing traffic. This suggests that the atmospheric CO₂ in urban street is contaminated by exhaust gases of car.

EXPERIMENTAL

Sampling

Zelkova serrata leaves at height of 4 m from Sakuradori roadside trees were collected in 16 September 1996 and the ambient air from street crossings in Toyama City, monthly during May–November in 1996–1997. The air was sampled in a Aluminized Polyethylene bag by a two way gas-tight syringe. The traffic at street crossings was exhibit more positive δ¹³C values under water stressed conditions, values changing by a much as 5.4‰. On the other hand, if there is no stress on urban roadside trees, the δ¹³C values of leaves are mainly controlled by those of atmospheric CO₂.

The aim of present study is to judge the stress due to water availability and nutrient efficiency from investigation of *Zelkova serrata* carbon isotope and nitrogen content at Sakuradori Street in Toyama City. We also would like to clarify the source of atmospheric CO₂ from the isotopic discrimination between this plant and CO₂ when there is no stress associated with *Zelkova serrata*.

INTRODUCTION

When plants fix atmospheric CO₂ by photosynthesis, carbon isotope fractionation associated with carboxylation and diffusion occurs. Therefore, plants are enriched in ¹²C relative to the atmosphere. The isotopic discrimination between C₃ plants and atmospheric CO₂ is shown in the following equation (Farquhar et al., 1989):

\[\delta^{13}C_p = \delta^{13}C_a - (4.4 + 22.6 \times C_i/C_a) \]

where \(\delta^{13}C_p \) is the carbon isotope ratio of plants, \(\delta^{13}C_a \) the carbon isotope ratio of atmospheric CO₂, \(C_i \) the internal gas-phase content of CO₂ and \(C_a \) the external CO₂ content. When isotopic discrimination between plants and atmospheric CO₂ is established, the leaf carbon isotope ratio depends on that of the CO₂ in the ambient air.

The \(C_i/C_a \) ratios of plants, however, change according to the long-term water stress and/or nutrient conditions (e.g., Toft et al., 1989; Read et al., 1992). For example, the ratios vary from 0.64 to 0.40 for *Zelkova serrata* due to soil water content (Takahashi, 1995). Consequently, leaves
averaged from the data of May–September in 1996.

Analytical method

Leaf samples were dried thoroughly for 6 hr at 80°C prior to combustion and ground to a powder. After 4 mg of leaf samples has been weighed into a cut quartz tube, the sample was mixed with 0.5 g of CuO by gentle shaking. Approximately 0.25 g of reduced copper was added to the combustion tube on top of the sample/CuO mixture. When a vacuum was achieved, the combustion tubes were sealed with a gas/oxygen torch. The muffle furnace in which each sealed tube was placed was heated to 900°C and the temperature maintained for 2 hr. The gases produced by combustion of leaf sample revealed the presence of only CO2, H2O and N2. After the CO2 and N2 in leaf sample were separated with Porapak Q by helium carrier and their contents were determined by a TCD gas chromatograph, then the remaining CO2 was separated from the other gases by cryogenic distillation (Kidoguchi, 1996). The CO2 produced was manometrically measured.

The concentrations of atmospheric CO2 were measured by a FID gas chromatograph equipped with methanizer. For the measurement of carbon isotope ratios, atmospheric CO2 is condensed out in a trap cooled by liquid nitrogen (Craig, 1953). However, minor amount of atmospheric N2O, which has the same molecular masses as CO2 but has quite different abundances of isotope species, is also trapped with CO2 because both molecules have almost the same physical properties. In the present study, we reduced N2O to N2 through CO2-N2O mixture over copper heated at 500°C and pumped away the N2 (Kidoguchi, 1998).

The CO2 thus purified was analyzed for its δ13C with the Micromass PRISM mass spectrometer. The overall reproducibility for both the leaf and air samples was ±0.1‰.

RESULTS AND DISCUSSION

Carbon isotope ratios and nitrogen contents of *Zelkova serrata* leaves range from –32.4 to –29.7‰ and from 1.6 to 2.1 wt. %, respectively (Table 1). On the contrary, δ13C values and contents of atmospheric CO2 during May–November, 1996–1997 at street crossings in Sakuradori Street are –11.2 to –9.2‰ and 402 to 440 ppm, respectively (Fig. 1). The carbon isotope ratio of CO2 decreases with increasing CO2 content of air as shown in Fig. 1. No seasonal variations in δ13C values of tree leaves and atmospheric CO2 at street crossings along Sakuradori Street were clearly observed (Kidoguchi, 1998).

Isotope discrimination

In order to judge the stress, substituting the averaged δ13C value (~11.1‰) of atmospheric CO2 along Sakuradori Street and the C/Ci ratios from 0.64 and 0.40 into Eq. (1) the carbon isotope ratios of *Zelkova serrata* ranging from –29.0 to –23.5‰ are obtained. Since the tree leaves are depleted in δ13C relative to the calculated values by about 5‰, there are no stress associated with the roadside trees. In this case, the δ13C values of *Zelkova serrata* leaf should have been constant, but the values are scattered actually. At

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Carbon (wt. %)</th>
<th>Nitrogen (wt. %)</th>
<th>δ13C (‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZS-01</td>
<td>46</td>
<td>2.1</td>
<td>–31.6</td>
</tr>
<tr>
<td>ZS-02</td>
<td>47</td>
<td>1.8</td>
<td>–32.4</td>
</tr>
<tr>
<td>ZS-03</td>
<td>45</td>
<td>1.7</td>
<td>–31.4</td>
</tr>
<tr>
<td>ZS-04</td>
<td>44</td>
<td>2.1</td>
<td>–31.7</td>
</tr>
<tr>
<td>ZS-05</td>
<td>47</td>
<td>1.8</td>
<td>–32.0</td>
</tr>
<tr>
<td>ZS-06</td>
<td>47</td>
<td>1.9</td>
<td>–32.0</td>
</tr>
<tr>
<td>ZS-07</td>
<td>47</td>
<td>2.1</td>
<td>–30.1</td>
</tr>
<tr>
<td>ZS-08</td>
<td>47</td>
<td>2.1</td>
<td>–32.2</td>
</tr>
<tr>
<td>ZS-09</td>
<td>42</td>
<td>1.6</td>
<td>–29.7</td>
</tr>
<tr>
<td>ZS-10</td>
<td>47</td>
<td>1.9</td>
<td>–31.2</td>
</tr>
<tr>
<td>ZS-11</td>
<td>49</td>
<td>1.8</td>
<td>–30.0</td>
</tr>
<tr>
<td>ZS-12</td>
<td>41</td>
<td>2.1</td>
<td>–30.5</td>
</tr>
<tr>
<td>ZS-13</td>
<td>47</td>
<td>2.1</td>
<td>–30.8</td>
</tr>
<tr>
<td>ZS-14</td>
<td>43</td>
<td>1.8</td>
<td>–32.4</td>
</tr>
<tr>
<td>ZS-15</td>
<td>46</td>
<td>1.8</td>
<td>–30.8</td>
</tr>
<tr>
<td>ZS-16</td>
<td>46</td>
<td>1.8</td>
<td>–30.8</td>
</tr>
</tbody>
</table>

ZS-01, ZS-08, ZS-12, ZS-15, ZS-16: Street crossings.
the sampling point of present study, there are no differences in meteorological conditions, such as relative humidity and light intensity that would have caused the change in the isotope ratio (e.g., Madhavan et al., 1991). Therefore, variations in δ¹³C values of *Zelkova serrata* depend on those of the CO₂ in the air and reflect the fractionation in the atmospheric CO₂.

From the *Zelkova serrata* leaf nitrogen content, it was expected that all of these trees were nutritionally deficient, judging from the values reported by Takahashi (1995). Since the stress due to nutrition deficiency, however, did not affect the leaf δ¹³C values, it was not responsible for the variation in isotope ratios (Kidoguchi, 1996). Therefore, the variations depend on source of atmospheric CO₂.

Source of CO₂ in urban street

As shown in Fig. 2, the CO₂ content at some street crossings increases with increasing the traffic in Toyama City. Furthermore, the δ¹³C value of atmospheric CO₂ become more negative with increasing CO₂ content in the ambient air. On the contrary, the roadside tree leaves exhibit more negative δ¹³C values with increasing the traffic (Fig. 3). This suggests that most of the atmospheric CO₂ in urban street is mainly derived from exhaust gases of cars. Consequently, the atmospheric CO₂ content can be estimated by measuring leaf

Fig. 1. Plot of δ¹³C values versus content of CO₂ from air samples during May–November, 1996–1997, at Sakuradori Street in Toyama City. The line is drawn by the least-squares method.

Fig. 2. Relationship between atmospheric CO₂ contents vs. traffic at street crossings in Toyama City. The air was sampled on September 6, 1996, and the traffic (car numbers per day) is the average value for the data of May–September in 1996. Closed circles are from Sakuradori Street (at the crossings corresponding to the tree positions of ZS-01, ZS-08, ZS-15, ZS-16 in Table 1) and open circles from other streets.
Fig. 3. Carbon isotope ratios in Zelkova serrata leaves (sampled on September 6, 1996, ZS-01, ZS-08, ZS-12, ZS-15, ZS-16 in Table 1) vs. traffic (May–September, 1996) at street crossings in Sakuradori Street. The traffic indicates car numbers (×1000) per day.

$\delta^{13}C$ values, if the traffic along each street is presumed. Assuming that in the roadside tree there is no stress such as water deficiency, the behavior of urban atmospheric CO$_2$ can be clarified from the examination of the leaf $\delta^{13}C$ values for all city roadside trees.

Acknowledgments—The author wishes to thank H. Satake for his technical assistance. We also thank J. Matsuda, H. Wada and anonymous reviewer for their suggestions to improve this manuscript.

REFERENCES