TERRAPUB Earth, Planets and Space
Back

Earth Planets Space, Vol. 60 (No. 11), pp. 1111-1116, 2008

LETTER

Imaging heterogeneous velocity structures and complex aftershock distributions in the source region of the 2007 Niigataken Chuetsu-oki Earthquake by a dense seismic observation

Aitaro Kato, Shinichi Sakai, Eiji Kurashimo, Toshihiro Igarashi, Takashi Iidaka, Naoshi Hirata, Takaya Iwasaki, Toshihiko Kanazawa, and Group for the aftershock observations of the 2007 Niigataken Chuetsu-oki Earthquake

Earthquake Research Institute, University of Tokyo, Tokyo, Japan

(Received December 4, 2007; Revised January 22, 2008; Accepted January 30, 2008; Online published November 18, 2008)

Abstract: The velocity structure and accurate aftershock distributions in the source region of the 2007 Niigataken Chuetsu-oki Earthquake (thrust type) are obtained by inverting the arrival times from 848 aftershocks observed by a dense seismic network deployed immediately after the mainshock (8 h later). Both the detailed velocity structure and the accurate aftershock distribution show lateral heterogeneity along the fault strike. In the northeast area, aftershocks are aligned along both the NW- and SE-dipping planes. These planes are conjugate to each other. The mainshock hypocenter is located close to the bottom of an approximately 50° NW-dipping plane, which indicates that the mainshock rupture could have initiated on the NW-dipping plane. The high-Vp body beneath this aftershock alignment shows a convex upward shape. In contrast, from the center to the southwest area, most of the aftershocks are aligned along SE-dipping planes. The high-Vp body beneath this aftershock alignment shows a convex downward shape. Based on these results, we suggest that the crustal structure in the source region is divided into two segments by a boundary zone situated between the northeast and southwest areas. It should be noted that this segment boundary zone is coincident with the complex aftershock zone where numerous conjugate fault planes exist. We propose that the mainshock rupture initiated near the bottom of the NW-dipping fault plane and ran to the southwest, then transferred at the segment boundary zone which has numerous conjugate fault planes to the SE-dipping plane.
Key words: Tomography, the 2007 Niigataken Chuetsu-oki Earthquake, aftershocks, heterogeneous structures.


Corresponding author E-mail: akato@eri.u-tokyo.ac.jp


[Full text] (PDF 3.1 MB)