Nonlinear Waves and Chaos in Space Plasmas
Cover: Mt. Fuji Off Kanagawa by Hokusai Katsushika (1760–1849)
Series: The 36 Views of Mt. Fuji, Ukiyoe
Nonlinear Waves and Chaos in Space Plasmas

Edited by

T. Hada
Department of Applied Physics, Kyushu University at Ropponmatsu
Ropponmatsu, Chuoku, Fukuoka, Japan

and

H. Matsumoto
Radio Atmospheric Science Center, Kyoto University
Gokasho, Uji, Kyoto, Japan

Terra Scientific Publishing Company, Tokyo
Preface

Nonlinear waves and chaos have been the subjects of intense research in a variety of branches of natural sciences in recent years. Space plasma physics has been no exception. The space plasmas, naturally embedded in an immense interplanetary space, provide a unique and ideal 'natural laboratory' for studying nonlinear physical processes. In particular, the fact that the space plasmas are almost perfectly collisionless promoted the development of a considerable number of new fields in plasma physics. Some examples are the collisionless shock waves, micro-instabilities, anomalous dissipation, and the magnetohydrodynamic turbulence. Also, the complex properties of nonlinear waves in space plasmas are one of the eminent research topics which have fascinated many space plasma physicists for decades.

From the early days of spacecraft experiments, it was already evident that space plasmas were abundant with numerous kinds of nonlinear plasma waves. Recently, theoretical understanding of these observations has rapidly begun to become clear, which could be ascribed to the following three reasons. First, the new generation spacecrafts with advanced experimental techniques started to capture plasma and field data with improved accuracy and time resolution. Nowadays such detailed information as the three-dimensional velocity space plasma distribution function is commonly available. With the use of multi-spacecrafts, it becomes possible to separate temporal and spatial variations. As the data become more sophisticated, quite naturally, theories pertinent to the observations are urged to become more elaborate. Second, remarkably rapid progress of computer power, both in speed and in storage space, made it possible to perform numerical simulations with increasingly larger number of particles and more grid cells, for a longer running time, and with higher phase space dimensions. Assisted also by the development of the state-of-the-art simulation and diagnostics techniques, it is now possible to predict complex nonlinear behavior of space plasmas using realistic parameters, although one should still bear in mind that there are limitations. Third, there has been significant development in applied mathematics on the theory of nonlinear dynamical systems with a small number of intrinsic degrees of freedom. This involves analysis on nonlinear waves, chaos, and turbulence. Actually, many of the key concepts related to these fields have emerged much ear-
lier: for example, back in 1960's a series of revolutionary ideas had already been born in nonlinear wave physics, such as the concept of solitons, the reductive perturbation method, and the procedures of exactly linearizing nonlinear evolution equations. However, it is only recently that scientists have started to apply these concepts to the discussion of nonlinear waves and chaos in space plasma physics.

It was thus quite timely that the International Workshop on Nonlinear Waves and Chaos in Space Plasmas was held, with great success, in Uji Japan, from June 13th to the 16th, 1994. The main objective of the workshop was to discuss up-to-date research results related to nonlinear space plasma waves, turbulence, and chaos, from the perspectives of spacecraft and laboratory experiments, plasma theory and computer simulation, and the theory of nonlinear dynamical systems and evolution equations. Equally stressed was that the workshop provides a unique forum for stimulating interaction between the scientists from the different fields. In order to make discussions intensive and informal, the workshop was designed to be small in scale: there were some fifty participants, mostly invited, from 11 countries. The workshop was roughly grouped into four sessions: hydromagnetic waves in space plasmas, physics of nonlinear waves and shocks, turbulence and new methods, and chaos and stochasticity in magnetoplasmas.

The present volume is a collection of eleven distinct papers presented at the workshop. Unlike conventional conference proceedings, all the papers are refereed by (at least) two reviewers. Although they by no means cover the topics related to nonlinear waves and chaos in space plasma physics completely, they do represent some essential portions of our current understanding on the subject. We hope this volume will be beneficial to those interested in this new and exciting field of research.

Editors
Contents

Preface v

Chapter 1
A REVIEW OF NONLINEAR LOW FREQUENCY (LF) WAVE OBSERVATIONS IN SPACE PLASMAS: ON THE DEVELOPMENT OF PLASMA TURBULENCE 1
Bruce T. Tsurutani, Karl-Heinz Glassmeier and Fritz M. Neubauer
1.1 Introduction .. 1
1.2 Results ... 3
1.2.1 Jovian foreshock ... 6
1.2.2 Comets ... 11
1.2.3 Deep foreshock waves 23
1.2.4 Interplanetary discontinuities and Alfvén waves 27
1.3 Conclusions ... 42
References .. 42

Chapter 2
GENERATION AND NONLINEAR EVOLUTION OF COMETARY WAVES 45
A. L. Brinca
2.1 Introduction .. 46
2.2 Wave Stimulation ... 48
2.2.1 Prologue ... 48
2.2.2 Examples of wave generation 50
2.3 Wave Evolution .. 53
2.3.1 On the nonlinear evolution 53
2.3.2 Examples of coherent nonlinear behavior 54
2.4 Occurrence of Nongyrotropy 56
2.5 Consequences of Nongyrotropy 56
2.5.1 Unperturbed distributions 57
2.5.2 Wave and dispersion equations 58
2.6 Physics of Nongyrotropy 59
2.6.1 Frequencies of the coupled modes 59
2.6.2 Interaction between electrostatic and electromagnetic modes ... 60
2.6.3 Interpretation of the nongyrotropic dispersion ... 61
2.7 Illustration of Nongyrotropic Effects ... 62
 2.7.1 Zero unperturbed nongyrotropic perpendicular current ... 62
 2.7.2 Finite unperturbed nongyrotropic perpendicular current ... 65
2.8 Discussion ... 72
References .. 72

Chapter 3
ADVENTURES IN PARAMETER SPACE: A COMPARISON OF LOW-FREQUENCY PLASMA WAVES AT COMETS 77
Karl-Heinz Glassmeier, Bruce T. Tsurutani and Fritz M. Neubauer
3.1 Comet-Solar Wind Interaction ... 78
3.2 Wave Forms and Power Spectra ... 81
3.3 Wave Polarization and Radial Evolution .. 92
3.4 Theoretical Considerations on Wave Polarization and Propagation 100
3.5 Wave Sources and Nonlinear Wave Evolution .. 111
3.6 Epilog .. 114
References .. 116

Chapter 4
SOLITON THEORY OF QUASI-PARALLEL MHD WAVES 121
Einar Mjølhus and Tohru Hada
4.1 Introduction ... 121
4.2 The Physical Meaning of the DNLS Equation ... 124
4.3 Exact Solutions .. 128
4.4 Inverse Scattering Transform and Soliton Formation ... 140
4.5 Dispersive Steepening of Quasi Parallel MHD Waves .. 147
4.6 Nonlinear Landau Damping of Circularly Polarized Wave Trains 154
4.7 The Oblique Two-Parameter Solitons of the DNLS Equation ... 155
References .. 166

Chapter 5
NONLINEAR EVOLUTION OF MHD WAVES AT THE EARTH’S BOW SHOCK: OPINIONS ON THE CONFRONTATION BETWEEN THEORY, SIMULATIONS, AND MEASUREMENTS 171
Steven R. Spangler
5.1 Introduction ... 172
5.2 Foreshock Turbulence and Theories of Finite Amplitude Alfvén Waves

5.2.1 Presentation of the equation and comments of the the extent of its validity 176
5.2.2 Summary of observational characteristics which suggest nonlinear evolution 178
5.2.3 A theory of upstream waves in terms of parallel-propagating nonlinear waves 180
5.2.4 Objections to a description of upstream waves in terms of parallel-propagating solutions to the DNLS 184
5.2.5 "Redemption" of the derivative nonlinear Schroedinger equation as a model for evolution of upstream MHD waves 185
5.2.6 Further properties of upstream waves explicable through the DNLS 200
5.2.7 Reservations about the validity of the DNLS 202

5.3 Evidence for the Parametric Decay Instability of Magnetohydrodynamic Waves in the Earth's Ion Foreshock 211
5.3.1 Brief review of the theory of the decay instability 211
5.3.2 Observational searches for evidence of the decay instability 213

5.4 Summary and Overview 219
References 221

Chapter 6
RECENT ADVANCES IN THE THEORY OF NONLINEAR PLASMA MASER 225

Mitsuhiro NAMBU and Sergey V. VLADIMIROV

6.1 Introduction 225

6.2 Dielectric Function of the Nonresonant Waves 228
6.2.1 Direct third-order contribution 229
6.2.2 Polarisational contribution 231
6.2.3 Weak nonstationarity 233

6.3 Closed and Open Plasma Systems 235
6.3.1 Conservation of nonresonant quanta in closed systems 235
6.3.2 Open systems 237
6.3.3 Regular sources 239
6.3.4 Wave amplification in nonstationary plasmas 240

6.4 Transition Processes in Plasma-Maser Interactions 243
6.4.1 Stochastic properties of waves and plasma microinhomogeneities 243
6.4.2 Regular resonant waves 244
6.4.3 Random resonant waves 247
6.4.4 Transition interaction 249

6.5 Evolution of Resonant Waves and Particle Distributions 251
6.5.1 Nonlinear evolution of resonant waves 251
6.5.2 One-dimensional problem 252
6.5.3 Wave stochasticity and maximum rates for resonant waves 255
6.5.4 Inverse plasma-maser effect 258

6.6 Interactions in Magnetised Plasmas 260
6.6.1 The nonlinear dielectric permittivity 260
6.6.2 Plasma-maser interaction 262
6.6.3 Transition to unmagnetized plasmas 264

References ... 266

Chapter 7

CHARGING EFFECTS IN PROPAGATION OF WAVES IN
DUSTY PLASMAS 271

Sergey V. VLADIMIROV

7.1 Introduction ... 271
7.2 Charging of a Dust Particle 273
7.3 Dielectric Permittivity of a Dusty Plasma 276
7.4 Wave Scattering in Equilibrium Dusty Plasmas 279
7.5 Stimulated Scattering in Collisional Dusty Plasmas 282
7.6 Wave Amplification in Non-Stationary Dusty Plasmas ... 286

References ... 289

Chapter 8

PROPAGATION OF ALFVÉN WAVE PACKET IN AN
ANOMALOUS DISPERSION PLASMA 293

Masayoshi TANAKA and Yoshimitsu AMAGISHI

8.1 Introduction ... 293
8.2 Description of Wave Packet Using The Saddle Point Method 295
8.2.1 The saddle point method 295
8.2.2 Numerical example 298
8.3 Alfvén-Wave Packet Experiments 302
8.3.1 Experimental procedure and Alfvén wave excitation 303
8.3.2 Kramers-Kronig relation 306
8.3.3 Average propagation velocity of Alfvén wave packets ... 309
8.3.4 Split propagation of short wave packets 313
8.4 Conclusions ... 317

References ... 317

Chapter 9

CHAOTIC ACCELERATION OF ELECTRONS
INTERACTING WITH ELECTRON CYCLOTRON WAVE 319

M. TANAKA, H. SHOYAMA, Y. KAWAI and M. KONO

9.1 Introduction ... 319
9.2 Experiment .. 321
9.3 Results and Discussions .. 322
9.4 Conclusions ... 333
References ... 334

Chapter 10
NONLINEAR ELF-VLF EFFECTS OBSERVED ON
ACTIVNY SATELLITE ... 337
O. A. Molchanov, M. M. Mogilevsky, V. V. Afonin, Z. Klos,
M. Hayakawa and N. Shima
10.1 Introduction ... 337
10.2 Short Description of Radiation and Reception Equipment 338
10.3 Electric Field of VLF-G Signal Near the Antenna 340
10.4 Excitation of ELF Turbulence by VLF-G Signal 343
10.5 Excitation of VLF Turbulence ("Echo" Signal) 347
10.6 Possible Excitation of Narrow-Band Emissions from
PVP-Generator .. 352
10.7 Conclusions .. 357
References ... 357

Chapter 11
NONLINEAR DYNAMICAL STUDIES OF GLOBAL
MAGNETOSPHERIC DYNAMICS ... 359
A. Surjalal Sharma
11.1 Introduction ... 360
11.2 Reconstruction of Phase Space from Time Series Data 361
11.2.1 Correlation dimension .. 362
11.2.2 Kolmogorov entropy and Lyapunov exponents 363
11.2.3 Singular spectrum analysis 365
11.3 Dynamical Studies Using Geomagnetic Time Series Data .. 366
11.4 Modeling of the Global Behavior 373
11.5 Prediction of Magnetospheric Behavior from Time Series Data 376
11.5.1 Prediction using reconstructed phase space 378
11.5.2 Prediction of magnetospheric substorms 380
11.5.3 Prediction of magnetic storms 380
11.6 Summary ... 383
References ... 386