DEPOSITION OF DIAMOND FROM CH₄–H₂ PLASMA, (CH₃)₂CO–H₂ PLASMA, AND CO–H₂ PLASMA IN MICROWAVE DISCHARGE

Hiroaki TOSIMA¹, Toshiro KOTAKI¹, Yoichi YAGUCHI¹, Yuji AMADA¹, and Osamu MATSUMOTO²

¹Namiki Precision Jewel Co. Ltd., Shinden, Adachi-ku, Tokyo 123, Japan
²Aoyama Gakuin University, Chitosedai, Setagaya-ku, Tokyo 157, Japan

Using a microwave discharge, diamond was deposited on silicon wafers from (CH₃)₂CO(1 vol.%)–H₂ and CO(10 vol.%)–H₂ plasmas as well as CH₄(1 vol.%)–H₂ plasma at a pressure of 1.3 kPa. The substrates were covered with carbonaceous films and particles having crystal habit planes were detected by SEM observation. Deposits were identified as diamond by the X-ray diffraction method as well as Raman spectroscopy. CH radicals were identified by emission spectroscopy, in all three types of plasmas. The existence of CH₃ (x=1–4) radicals in the plasmas was confirmed by mass spectroscopy. Moreover, H₂O was also identified in both the (CH₃)₂CO–H₂ and CO–H₂ plasmas. From the correlation between the deposits and the species in the plasmas, it is believed that diamond is synthesized through the formation of CH₃ radicals in the plasma.

1. Introduction

Diamond thin films have been deposited from a methane–hydrogen mixture gas plasma prepared using microwave discharge¹⁵. In this procedure, methyl radicals prepared in the plasma would be precursors of diamond deposition²,³. In other research, diamond has been synthesized using a carbon monoxide and hydrogen mixture as plasma gas in a microwave discharge⁴. In this case, precursors other than methyl radicals were considered for the diamond deposition. Moreover, the deposition of diamond at higher rates has been achieved from acetone-hydrogen mixture gas by the thermal CVD method⁵. Since hydrocarbons are formed from the mixture of carbon monoxide and hydrogen using a catalyst as well as in the microwave discharge⁶, diamond may be deposited from the mixture of carbon monoxide and hydrogen through hydrocarbons. We have studied the effect of the additive gases to methane in the deposition of diamond using microwave discharge and have found experimentally that diamond was synthesized through methyl radicals⁷, after which we have carried out the deposition of diamond from acetone-hydrogen and carbon monoxide-hydrogen mixture gases.

In the present paper, we discuss the scheme of diamond deposition from methane-hydrogen, acetone-hydrogen, and carbon monoxide-hydrogen plasmas prepared using microwave discharge from the characterization of deposits together with the identification of species in the plasmas.

2. Experimental

The apparatus used in the deposition of diamond is the same as that reported previously⁸. Methane, carbon monoxide, and hydrogen were introduced into the quartz discharge tube from their respective cylinders through flow meters. Acetone was introduced using hydrogen as a carrier gas from liquid kept at a desired temperature. The mixing ratios of the gases were maintained as follows: CH₄(1 vol.%)–H₂, (CH₃)₂CO(1 vol.%)–H₂, and CO(10 vol.%)–H₂. After the evacuation of the discharge tube below 5×10⁻² Pa, the gas mixtures were introduced into the discharge tube at 20 sccm gas flow rate and the pressure in the discharge tube was maintained at 1.3 kPa. The microwave discharge was ignited and the discharge was carried out for 2 h under 200 W of power in every case.

The carbonaceous film was deposited on a Si(100) substrate. SEM, X-ray diffraction, and Raman spectroscopy were applied to identify the deposits.

During the discharge, the emission spectra from the plasmas were recorded using a monochromator and the mass spectra for the species in the plasmas were identified by a quadrupole mass spectrometer.

3. Results and discussion

Characterization of products

After discharge for a period of 2 h, it was discovered by SEM that the substrates were covered with carbonaceous films in every case, as shown in Fig. 1. Diamond particles having habit planes were also observed, also shown in Fig. 1. The diffraction peaks at approximately 43.8°, 72.5°, and 91.4° of 2θ were identified by the irradiation of the CuKα line. These peaks are attributed to the (111), (220), and (311) planes of diamond, respectively. In the Raman spectra of the deposits, the peak attributed to diamond at about 1333 cm⁻¹ was detected in all deposits together with the peak attributed to amorphous carbon around 1500 cm⁻¹, as shown in Fig. 2. The deposits from the three types of plasmas were identified by the three

Fig. 1. Scanning electron micrographs of the deposits from (a) CH₄(1 vol.%)-H₂ plasma, (b) (CH₃)₂CO(1 vol.%)-H₂ plasma, and (c) CO(10 vol.%)-H₂ plasma.

![Graph showing Raman spectra of deposits from different plasmas.](image-url)

Fig. 2. Raman spectra of the deposits from (a) CH₄(1 vol.%)-H₂ plasma, (b) (CH₃)₂CO(1 vol.%)-H₂ plasma, and (c) CO(10 vol.%)-H₂ plasma.
characterization methods as approximately the same materials.

Emission spectroscopy of plasmas

Emission spectra from the CH₄-H₂ plasma, the (CH₃)₂CO-H₂ plasma as well as CO-H₂ plasma prepared using microwave discharge were obtained in the wavelength region between 600 and 200 nm. The observed electronic transitions in these three types of plasmas are summarized in Table 1. In the CH₄-H₂ plasma, H atoms and CH and C₂ radicals were observed. In the (CH₃)₂CO-H₂ and CO-H₂ plasmas, CO and OH radicals were observed in addition to those observed in the CH₄-H₂ plasma. The CO radicals would be the fragments of (CH₃)₂CO and excited species of CO molecules; the OH radicals would be the fragments of water molecules which were formed by the reaction between CO radicals and H₂ molecules or H atoms in the plasma. The relative intensities of the band heads of molecules and of the lines of the H atom in the emission spectra of the three types of plasmas are given in Table 2. The relative intensities of H, CH, and C₂ are almost the same in all plasmas.

Mass spectroscopy of plasmas

The mass spectra were taken for each plasma under 200 W of power input both with and without microwave discharge. The species in the discharge tube were introduced into the analyzing chamber which was kept at a pressure of an order of magnitude below 10⁻² Pa through an orifice 10–30 μm in diameter. The mass spectra obtained in these three types of plasmas are shown in Fig. 3.

Table 1. Observed electronic transitions in plasmas by emission spectroscopy, from 600 to 200 nm

<table>
<thead>
<tr>
<th></th>
<th>CH₄(1 vol.%)-H₂ plasma</th>
<th>(CH₃)₂CO(1 vol.%)-H₂ plasma</th>
<th>CO(10 vol.%)-H₂ plasma</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Balmer series</td>
<td>Hβ, Hγ, Hδ</td>
<td>Hβ, Hγ, Hδ</td>
</tr>
<tr>
<td>CH</td>
<td>4300 Å system</td>
<td>A²Δ-X²Π₂, Δν=0 (0–0, Q heads)</td>
<td>A²Δ-X²Π₂, Δν=0 (0–0, Q heads)</td>
</tr>
<tr>
<td>C₂</td>
<td>Swan system</td>
<td>A¹Π₁-X²Π₁, Δν=0 (0–0, 1–1)</td>
<td>A¹Π₁-X²Π₁, Δν=0 (0–0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C₂, Swan system</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CO, E¹Π₁-A¹Π₁ system</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OH, 3064 Å system</td>
</tr>
</tbody>
</table>

Table 2. Relative intensities of band heads and line in the emission spectra from plasmas

<table>
<thead>
<tr>
<th></th>
<th>CH₄-H₂</th>
<th>(CH₃)₂CO-H₂</th>
<th>CO-H₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>H: Hβ</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>CH: 4300 Å</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>C₂: Swan</td>
<td>20</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>CO: 3rd, pos.</td>
<td>N.D.*</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>OH: 3064 Å</td>
<td>N.D.</td>
<td>1</td>
<td>20</td>
</tr>
</tbody>
</table>

N.D.*: Could not be detected.
(x=1–4) ions were identified in the CH₄–H₂ plasma in addition to those from residual gases. CO⁺, CH⁺, and H₂O⁺ ions were identified in the (CH₃)₃CO–H₂ and CO–H₂ plasmas in addition to those observed in the CH₄–H₂ plasma. The increments of CHₓ⁺, OH⁺, and H₂O⁺ ions in the (CH₃)₃CO–H₂ and CO–H₂ plasmas suggest that these ions would be formed by the reaction between CO and H₂ in the plasma and CHₓ⁺ would be the precursor of the diamond deposition in all plasmas.

4. Concluding remarks

In the methane-hydrogen, acetone-hydrogen, and carbon monoxide-hydrogen plasmas prepared using microwave discharge, diamond thin films were obtained. From identified species in the plasmas, it was suggested that diamond would be deposited from hydrocarbons, probably methyl radicals, created in the plasmas in all cases. The creation of the hydrocarbons in the carbon monoxide-hydrogen plasma is considered by the reaction between carbon monoxide and hydrogen, CO+H₂→H₂O+CHₓ, which is known as the Fischer-Tropsch reaction as reported previously⁶.
Acknowledgements. The authors wish to thank Dr. M. Ohkubo of JASCO for performing the Raman spectroscopy of the deposits.

REFERENCES