CONTENTS

Foreword
A vital information tool for managers and decision-makers working to safeguard our mangrove ecosystems
by Prof. Dr. Salif Diop xiv

An up-to-date systematic study on the physical processes in mangroves
by Prof. Dr. Phan Nguyen Hong xv

Physics helps elucidate the mechanisms of mangrove environments
by Emeritus Prof. Dr. Takehisa Nakamura xvi

Preface xvii

Acknowledgments xix

Editors xx

Part I
Outline of the physical processes within mangrove systems

Chapter 1 Introduction ... 3

Chapter 2 Present state of mangrove studies from a physical viewpoint 5
2.1. Studies of hydraulic systems that are unique to mangrove areas 5
2.1.1. Tidal flow ... 5
2.1.2. Sea waves—tsunamis 5
2.1.3. Groundwater flow 6
2.2. Studies of the mangrove environment from a physical viewpoint 6
2.2.1. Water properties that depend on physical processes 6
2.2.2. Material exchange between mangrove areas and the open sea 7
2.2.3. Mangrove topographies that are dependent on hydraulic processes 7
2.2.4. Atmospheric and terrestrial processes that affect the mangrove environment .. 8
2.2.5. Feedback relation between physical and ecological processes 9
2.3. Modeling-based studies of mangrove areas 9
Chapter 3 Physical factors that shape mangrove environments

3.1. Classification of mangrove landforms 11
3.2. Bottom conditions of mangrove swamps 12
3.3. Physical characteristics of mangrove vegetation 13
3.4. Water properties in mangrove areas 15
3.5. Behavior of water in mangrove areas 16
 3.5.1. Surface water in mangrove swamps 16
 3.5.2. Water flow in tidal creeks 17
 3.5.3. Groundwater processes in mangrove swamps 17
3.6. Atmospheric processes .. 21
3.7. Offshore processes ... 22
3.8. Terrestrial processes ... 23
3.9. Links between topography, physical processes and environmental consequences .. 24

Chapter 4 Hydrodynamics and physics that support the mangrove environment

4.1. Hydraulic features that are unique to mangrove areas 27
4.2. Scale of environmental change and driving forces 27
 4.2.1. Seasonal changes .. 28
 4.2.2. Fortnightly changes in tidal regime 28
 4.2.3. Daily changes in atmospheric variables 28
 4.2.4. Diurnal and semi-diurnal tidal fluctuations 29
 4.2.5. Resonant oscillation 31
 4.2.6. Sea waves .. 31
 4.2.7. Water turbulence 31
 4.2.8. Damaging events 31
 4.2.9. Residence time of water and materials 33
 4.2.10. Interaction between mechanisms with different time scales .. 33
4.3. Forces of resistance to water movement 34
4.4. Hydrodynamics at the tidal scale 34
4.5. Hydrodynamics at the scale of sea waves 35
4.6. Turbulence-scale hydrodynamics 36
4.7. Hydrodynamics within tidal creeks 36
4.8. Hydrodynamics of groundwater 39
4.9. Hydrodynamics of tsunamis in mangrove areas 41

Chapter 5 Feedback processes that maintain the mangrove environment

5.1. Interactions between biota, landforms, water flow, and the atmosphere 43
 5.1.1. Interrelations between biota and landforms 43
Contents

5.1.2. Interrelations between biota and water flow 44
5.1.3. Interrelations between biota and the atmosphere 45
5.1.4. Interrelations between water flow and landforms 45
5.1.5. Interrelations between landforms and the atmosphere 45
5.1.6. Interrelations between the atmosphere and water flow 45
5.2. Bio-geomorphology formed by the mangrove ecosystem itself to ensure survival ... 46
5.3. Response of nature to human activities 47
 5.3.1. Thinning of mangrove forests: destruction or recovery? 47
 5.3.2. Coastal erosion resulting from deforestation 48
 5.3.3. Paradox between preservation and utilization of mangroves 49

Chapter 6 Research technology ... 51
 6.1. Field observations .. 51
 6.2. Data analyses ... 52
 6.3. Laboratory experiments ... 53
 6.4. Numerical experiments .. 53

Chapter 7 Modeling of mangrove systems .. 55

Chapter 8 Future studies in the context of the preservation and utilization of mangroves .. 57

References ... 59

Part II
Case studies of mangrove physics

1. Relation between the tidal flow and the landform 67
 1.1. Hydrodynamics of a tidal creek-mangrove swamp system 69
 1.2. Longitudinal diffusion in mangrove-fringed tidal creeks 89
 1.3. Tidal asymmetry in mangrove creeks 103
 1.4. Density-driven secondary circulation in a tropical mangrove estuary 111
 1.5. Tidal asymmetry in creeks surrounded by saltflats and mangroves with small swamp slopes .. 123

2. Relation between the tidal flow and mangrove vegetation 133
 2.1. Drag force due to vegetation in mangrove swamps 135
2.2. Tidal flow in riverine-type mangroves .. 142
2.3. Tidal-scale hydrodynamics within mangrove swamps 147
2.4. Tidal deformation and inundation characteristics within mangrove swamps 156

3. **Action of sea waves and tsunamis intruding mangrove swamps** 169
3.1. Currents and sediment transport in mangrove forests 171
3.2. Mangroves as a coastal protection from waves in the Tong King delta, Vietnam ... 181
3.3. Wave reduction in a mangrove forest dominated by *Sonneratia* sp. 190
3.4. Hydraulic functions of mangroves in relation to tsunamis 204

4. **Formation of water properties** ... 221
4.1. An evaporation-driven salinity maximum zone in Australian tropical estuaries ... 223
4.2. Mixing, trapping and outwelling in the Klong Ngao mangrove swamp, Thailand ... 233
4.3. Water, salt and nutrient fluxes of tropical tidal salt flats 255
4.4. Dry season salinity changes in arid estuaries fringed by mangroves and saltflats ... 265

5. **Material exchange between mangrove areas and surroundings** 277
5.1. Flushing of salt from mangrove swamps 279
5.2. Tidal mixing and trapping in mangrove swamps 282
5.3. Dynamics, flushing and trapping in Hinchinbrook Channel, a giant mangrove swamp, Australia ... 295
5.4. Links between physical, chemical and biological processes in Bashita-minato, a mangrove swamp in Japan ... 320
5.5. Hydrodynamics of mangrove swamps and their coastal waters 337

6. **Transport of sediment and the formation of the mud substrate** 359
6.1. The role of turbulence in the settling of mud flocs 361
6.2. Transport of sediment in mangrove swamps 373
6.4. Sedimentation in mangrove forests ... 403
6.5. Hydrodynamics and geomorphological controls on suspended sediment transport in mangrove creek systems, a case study: Cocoa Creek, Townsville, Australia 411

7. **Action of groundwater flow** .. 429
7.1. Groundwater flow in the Bashita-minato mangrove area, and its influence on water and bottom mud properties ... 431
Contents

7.2. Flow through animal burrows in mangrove creeks .. 449
7.3. The use of computational fluid dynamics in predicting the tidal flushing of animal burrows ... 458
7.4. The effect of water density variations on the tidal flushing of animal burrows ... 469
7.5. Comparison between tidally driven groundwater flow and flushing of animal burrows in tropical mangrove swamps .. 478
7.6. Behavior of the groundwater in a riverine-type mangrove forest 490

8. Formation of soil properties .. 503
8.1. Profiling groundwater salt concentrations in mangrove swamps and tropical salt flats .. 505
8.2. Spatial variations of groundwater salinity in a mangrove-salt flat system, Cocoa Creek, Australia ... 514
8.3. A small sensor for detecting animal burrows and monitoring burrow water conductivity .. 526
8.4. The bulk hydraulic conductivity of mangrove soil perforated with animal burrows .. 533

9. Interrelation between mangrove environment and physics 545
9.1. The role of mangroves in retaining penaeid prawn larvae in Klang Strait, Malaysia ... 547
9.2. Dependence of dispersion on vegetation density in a tidal creek-mangrove swamp system .. 559
9.3. Passive irrigation and functional morphology of crustacean burrows in a tropical mangrove swamp ... 567
9.4. Salinity intrusion and rice farming in the mangrove-fringed Konkoure River delta, Guinea ... 575
9.5. Coastal erosion due to long-term human impact on mangrove forests 583

Index ... 593