Preface

"Textbooks and Heaven only are Ideal; Solidity is an imperfect state. Within the cracked and dislocated Real Nonstoichiometric crystals dominae. Stray Atoms, sully and precipitate; Strange holes, excitons, wander loose; because of Dangling Bonds, a chemical Substrate Corrodes and catalyzes—surface Flaws Help Epitaxial Growth to fix adsorptive claws."


This book is a record of our engagements with "the shock-induced chemical ballet of the solid" that has fascinated us over the period of almost two decades. The prospect of holding a new substance or a substance with unique microstructure that is not produced by Mother Nature has been an addictive charm. One of our main objectives of writing this book is to gather our work and our colleagues together to see some coherent structure or themes in the burgeoning field of shock compression chemistry with special focus on inorganic materials.

Although the book contains discussions on selected fundamentals of shock compression of solids, they are not meant to be reviews nor pedagogical discussions. They are included as part of the bases of shock chemistry. Also, they are the well travelled roads that one must pass to reach the borderland of the unknown. The selection and organization of topics is strongly influenced by such factors as our interests and perceptions, historical circumstances, and the page limitation. The book is a study in theory and application organized to detect the coherence of the phenomena of shock compression chemistry.

Discussions of the chemistry of materials are mostly found in applications. Theories are concerned with selected aspects of high pressure shock compression of solids and the effects on chemical reactions on shock wave propagation. Chapter Six is in some sense an attempt to merge the two on the macroscopic level. But the chemistry is rudimentary, if not embryonic. The quantitative understanding of materials chemistry under the extreme conditions of high pressures and high temperatures is a fundamental problem that needs to be challenged in the future.

It is a pleasure for the authors to acknowledge their indebtedness to their
colleague and friend, Dr. Robert A. Graham of Sandia National Laboratories, for his critical reading of the manuscript and a number of useful comments concerning all topics in the book. However, errors and faults that may still remain in the book are those of the authors.

One of the author (Y. Horie) wishes to thank Drs. Mark B. Boslough of Sandia National Laboratories and Datta D. Dandekar of Materials Research Laboratory for making their class notes on shock wave physics available to him. They taught these classes at SNL in 1985 and North Carolina State University in 1978 respectively. Some of the materials in Chapter Two are based on these notes. He also wishes to thank Dr. Robert D. Young of Southwest Research Institute for many hours of discussions on thermodynamics.

The other author (A. B. Sawaoka) wishes to express his gratitude in mentioning that the results of study described in Chapter Three and Chapter Seven were obtained by co-operative work with the scientists mentioned below. Above all, each of Prof. Kenichi Kondo and Dr. Tamotsu Akashi was his research partner, who separately collaborated with him for more than ten years. Dr. Tamotsu Akashi of Sumitomo Coal Mining, Dr. Masatada Araki of Nippon Oil & Fats, Prof. Kenichi Kondo of Tokyo Institute of Technology, Dr. Hiroshi Kunishige of Japan Defense Agency, Prof. Tsutomu Mashimo of Kumamoto University, Dr. Takao Soma of NGK Spark Plug, Dr. Hiroshi Sugiura of Yokohama City University, and Dr. Kenjiro Yamada of the National Defense Academy. During the preparation of the manuscripts for this book, valuable assistance was rendered by Mr. Masanobu Takamatsu and Ms. Chizuko Shiraishi, for whom the author is thankful.

Finally we wish to pay tribute to our students: L. S. Bennett, D. E. P. Hoy, M. D. Hwang, J. K. Park, and S. K. You at NCSU, and K. Dan at TIT. They have been a constant source of gratification to the authors. Without their dedicated hard work this book would not have been possible.