Contents

Preface, v

Chapter 1
INTRODUCTION

1.1 The Nature of Shock Waves, 3
1.2 Compaction of Powders and Shock Activation, 6
1.3 First-Order Phase Transitions and Chemical Reactions, 10
1.4 Time Scales and Interactions of Basic Mechanisms, 12
 1.4.1 Shock propagation in a particle assemblage, 12
 1.4.2 Energy localization, 12
 1.4.3 Thermal relaxation of hot spots, 14
 1.4.4 Mass diffusion in solids, 14
 1.4.5 Kinetic constants, 14
1.5 Some Roles of Shock Compression Techniques in Material Sciences
 Study, 16
 1.5.1 Shock compression technique as a tool of high pressure production, 16
 1.5.2 Appearance of diamond anvil-type high-pressure apparatus, 16
 1.5.3 New roles of shock compression technology as a unique method of
 very high temperature production, 18
 1.5.4 Development of conventional hypervelocity impact techniques for
 precise measurement of materials under shock compression, 19

Chapter 2
FUNDAMENTALS OF SHOCK WAVE PROPAGATION

2.1 Hydrodynamic Jump Conditions and the Hugoniot Curve, 23
2.2 Shock Transition in Hydrodynamic Solids, 32
2.3 Non-Hydrostatic Deformation of Solids, 42
 2.3.1 Elastic-ideally-plastic solids, 42
 2.3.2 Experimental observations of elastic-plastic behavior, 53
2.4 Wave-body interactions, 56
2.4.1 Preliminaries, 57
2.4.2 Planar impact of similar and dissimilar bodies, 60
2.4.3 Shock wave interaction with material boundaries, 61
2.4.4 Wave-wave interactions, 65
2.4.5 Detonation wave and interaction with a solid surface, 66

Chapter 3
SHOCK COMPRESSION TECHNOLOGY

3.1 Gun Techniques, 80
 3.1.1 Single stage gun, 80
 3.1.2 Conventional two stage light gas gun, 80
 3.1.3 Velocity measurement of projectile, 83
 3.1.4 Magnetoflyer method, 83
 3.1.5 CW x-ray velocity meter, 84
 3.1.6 Measurement of interior projectile motion, 86
 3.1.7 Recovery experiments, 87

3.2 Explosive Techniques, 89
 3.2.1 Plane shock wave generation and recovery fixture, 89
 3.2.2 Numerical simulation of shock compression in the recovery capsule, 91
 3.2.3 Cylindrical recovery fixture, 94

3.3 In-situ Measurements, 95
 3.3.1 Manganin pressure gauge, 95
 3.3.2 Particle velocity gauge, 99
 3.3.3 Observations of multiple shock reverberations by using a manganin pressure gauge and particle velocity gauge, 100
 3.3.4 Shock temperature measurement, 106
 3.3.5 Copper-Constantan thermocouple as a temperature and pressure gauge, 111

Chapter 4
THERMOMECHANICS OF POWDER COMPACTION AND MASS MIXING

4.1 A One Dimensional Particulate Model, 117
4.2 Continuum Models, 123
 4.2.1 Hydrodynamic models, 124
 4.2.2 Continuum plasticity theory, 141
 4.2.3 Application, 148
4.3 Particle Bonding and Heterogeneous Processes, 154
4.4 Mass Mixing, 160
Chapter 5
THERMOCHEMISTRY OF HETEROGENEOUS MIXTURES

5.1 Thermodynamic Functions of Heterogeneous Mixtures, 172
5.2 Analytical Equations of State, 187
5.3 Hugoniot of Inert Mixtures, 191
 5.3.1 Thermodynamically equilibrium models, 191
 5.3.2 Mechanical models, 197
5.4 First-Order Phase Transitions, 199
5.5 Chemical Equilibria, 206
5.6 Reaction Kinetics, 212
 5.6.1 Rate equations, 212
 5.6.2 Nucleation, 214
 5.6.3 Growth, 216
 5.6.4 Pressure effects, 217
5.7 Shock-Induced Reactions in Powder Mixtures, 218

Chapter 6
HYDRODYNAMICAL CALCULATIONS

6.1 Conservation Equations of Continuum Flow, 227
 6.1.1 Mass conservation, 228
 6.1.2 Conservation of linear momentum, 230
 6.1.3 Energy conservation, 231
6.2 Constitutive Modeling of Inorganic Shock Chemistry, 234
 6.2.1 VIR model, 235
 6.2.2 Pore collapse, 239
 6.2.3 Chemical kinetics, 239
 6.2.4 Computational constitutive reactions, 240
6.3 Applications of the VIR Model, 245
 6.3.1 Shock wave profiles in Ni/Al powder mixtures, 245
 6.3.2 Compaction of diamond with Si and graphite, 250
6.4 Continuum Mixture Theory and the VIR Model, 257
 6.4.1 Continuum mixture theory, 257
 6.4.2 Derivation of the VIR model using the CMT, 263
 6.4.3 A model of heterogeneous flow, 269

Chapter 7
SHOCK CONDITIONING AND PROCESSING OF CERAMICS

7.1 Shock Conditioning of Powder of Inorganic Materials, 277
 7.1.1 Brief review of shock conditioning studies, 277
 7.1.2 Aluminum oxide powder, 277
7.2 Shock Synthesis of Inorganic Materials, 281
 7.2.1 Shock synthesis studies, 281
 7.2.2 High dense forms of carbon, 281
 7.2.3 High dense forms of boron nitride, 285
 7.2.4 Shock treatment of boron nitride powders, 287
7.3 Shock Consolidation of Ceramic Powders, 301
 7.3.1 Why non-oxide ceramics?, 301
 7.3.2 Dynamic consolidation of SiC powders, 302
 7.3.3 Approach to the fabrication of crack free compacts, 304
 7.3.4 Shock consolidation of SiC powder utilizing post shock heating by
 exothermic reaction, 305
7.4 Dynamic Compaction of Zinc Blende Type Boron Nitride and Diamond
 Powders, 310
 7.4.1 Back ground, 310
 7.4.2 Cubic boron nitride, 311
 7.4.3 Diamond, 318
 7.4.4 Diamond composites obtained by utilizzing exothermic chemical
 reaction, 326
7.5 Very High Pressure Sintering of Shock Treated Powders, 332
 7.5.1 Silicon nitride, 334
 7.5.2 w-BN, 336
7.6 Rapid Condensation of High Temperature Ultrasupersaturated Gas, 347
 7.6.1 Silicon nitride, 347
 7.6.2 Carbon, 352

Index, 361